Analysis of non-reversible Markov chains

Michael Choi

Cornell University
School of ORIE
cc2373@cornell.edu

May 22, 2017
Introduction

- Consider a Markov chain P with time-reversal \hat{P} on state space \mathcal{X}
Introduction

- Consider a Markov chain P with time-reversal \hat{P} on state space \mathcal{X}
- Non-reversible Markov chains are of great theoretical and applied interest
Introduction

- Consider a Markov chain P with time-reversal \hat{P} on state space \mathcal{X}
- Non-reversible Markov chains are of great theoretical and applied interest
- The major theoretical challenge is to analyze non-self-adjoint operators
Introduction

- Consider a Markov chain P with time-reversal \hat{P} on state space \mathcal{X}
- Non-reversible Markov chains are of great theoretical and applied interest
- The major theoretical challenge is to analyze non-self-adjoint operators
- From a Markov chain Monte Carlo perspective, it has been demonstrated that non-reversibility can improve the rate of convergence:
 - Hwang et al. ’93 and ’05: acceleration by adding anti-symmetric drift
 - Diaconis et al. ’00: proposes a non-reversible sampler
 - Sun et al. ’10, Bierkens ’16: non-reversible Metropolis-Hastings by vortices/perturbations
 - Duncan et al. ’13: non-reversible Langevin samplers
A historical account for analyzing non-reversible Markov chains:

- Kendall ’59: dilation by Sz.-Nagy’s dilation theorem
- Fill ’91, Paulin ’15: reversiblizations
- Kontoyiannis and Meyn ’12: recasting to a weighted-L^∞ space
- Patie and Savov ’15, Miclo ’16, Choi and Patie ’16: intertwining/similarity orbit

We will focus on the similarity orbit and the reversiblization approach today.
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversiblizations

4 Summary
The S class

Definition (The S class: A class of Markov chain similar to normal Markov chain)

We say that $P \in S$ if

$$P \Lambda = \Lambda Q$$

where

- P: transition kernel of **general** chain on \mathcal{X}
- Λ: a bounded link kernel with bounded inverse
- Q: transition kernel of **normal** chain, i.e. $Q \hat{Q} = \hat{Q} Q$.
The S class

Definition (The S class: A class of Markov chain Similar to normal Markov chain)

We say that $P \in S$ if

$$P \Lambda = \Lambda Q$$

where

- P: transition kernel of general chain on \mathcal{X}
- Λ: a bounded link kernel with bounded inverse
- Q: transition kernel of normal chain, i.e. $Q \hat{Q} = \hat{Q} Q$.

Remark: Recall that we analyzed the spectral theory where P is upward skip-free and Q is a birth-death chain.
The \mathcal{S} class

Definition (The \mathcal{S} class: A class of Markov chain similar to normal Markov chain)

We say that $P \in \mathcal{S}$ if

$$P \Lambda = \Lambda Q$$

where

- P: transition kernel of general chain on \mathcal{X}
- Λ: a bounded link kernel with bounded inverse
- Q: transition kernel of normal chain, i.e. $Q \hat{Q} = \hat{Q} Q$.

Remark: If Λ is a Markov kernel, then P and Q are said to be intertwined by the link Λ.
Introduction

Analysis of non-reversible Markov chains via similarity orbit
 (i). Spectral theory
 (ii). Convergence to equilibrium
 (iii). Example: Ehrenfest model
 (iv). Cutoff phenomena

Metropolis-Hastings reversibilizations

Summary
Assume that $P \in \mathcal{S}$ with $P \overset{\Lambda}{\sim} Q$. Then the following holds.

- Denote the self-adjoint spectral measure of Q by $\mathcal{E} = \{ E_B; \ B \in \mathcal{B}(\mathbb{C}) \}$, then $\{ F_B := \Lambda E_B \Lambda^{-1}; \ B \in \mathcal{B}(\mathbb{C}) \}$ defines a spectral measure and P is a spectral scalar-type operator with spectral resolution given by

$$
P = \int_{\sigma(P)} \lambda \, dF_\lambda,$$

$$
\hat{P} = \int_{\sigma(\hat{P})} \lambda \, dF^*_\lambda.
$$

Note that

$$
\sigma(P) = \sigma(Q), \sigma(\hat{P}) = \sigma(\hat{Q}), \sigma_c(P) = \sigma_c(Q), \sigma_p(P) = \sigma_p(Q), \sigma_r(P) = \sigma_r(Q),
$$

and the multiplicity of each eigenvalue in $\sigma_p(P)$ is the same as that of $\sigma_p(Q)$.
The \mathcal{S} class: Spectral theory

Theorem

Assume that $P \in \mathcal{S}$ with $P \sim Q$. Then the following holds.

- For analytic and single valued function f on $\sigma(P)$, we have

$$f(P) = \int_{\sigma(P)} f(\lambda) \, dF_{\lambda}.$$
The S class: Spectral theory

Theorem

Assume that $P \in S$ with $P \overset{\Lambda}{\sim} Q$. Then the following holds.

- In particular, if P is compact on $X = [0, r]$ with distinct eigenvalues then for any $f \in \ell^2(\pi)$ and $n \in \mathbb{N}$,

 $$P^n f = \sum_{k=0}^{r} \lambda_k^n \langle f, f_k^* \rangle \pi f_k,$$

 where the set $(f_k)_{k=0}^{r}$ are eigenfunctions of P associated to the eigenvalues $(\lambda_k)_{k=0}^{r}$ and form a Riesz basis of $\ell^2(\pi)$, and the set $(f_k^*)_{k=0}^{r}$ is the unique Riesz basis biorthogonal to $(f_k)_{k=0}^{r}$. For any $x, y \in X$ and $n \in \mathbb{N}$, the spectral expansion of P is given by

 $$P^n(x, y) = \sum_{k=0}^{r} \lambda_k^n f_k(x) f_k^*(y) \pi(y).$$
The S class: Spectral theory

Eigentime identity (Aldous and Fill ’02, Cui and Mao ’10, Miclo ’15):

1. Sample two points x, y independently from π
The S class: Spectral theory

Eigentime identity (Aldous and Fill ’02, Cui and Mao ’10, Miclo ’15):

1. Sample two points x, y independently from π
2. Calculate the expected hitting time from x to y: $\mathbb{E}_x(\tau_y)$
Eigentime identity (Aldous and Fill ’02, Cui and Mao ’10, Miclo ’15):

1. Sample two points x, y independently from π
2. Calculate the expected hitting time from x to y: $\mathbb{E}_x(\tau_y)$
3. Expected value of this procedure is the sum of the inverse of the non-zero (and negative of the) eigenvalues of the generator:

$$\sum_{x, y \in \mathcal{X}} \mathbb{E}_x(\tau_y) \pi(x) \pi(y) = |\mathcal{X}| \sum_{i=1, \lambda_i \neq 0} \frac{1}{\lambda_i}$$
Corollary (Eigentime identity)

Suppose that \mathcal{X} is a finite state space. If $L \in \mathcal{S}(G)$ with eigenvalues $(-\lambda_i)_{i \in |\mathcal{X}|}$, then $(P_t)_{t \geq 0}$ and $(Q_t)_{t \geq 0}$ share the same eigentime identity.

$$\sum_{x, y \in \mathcal{X}} \mathbb{E}_x(\tau_y^Q) \pi_Q(x) \pi_Q(y) = \sum_{x, y \in \mathcal{X}} \mathbb{E}_x(\tau_y^P) \pi(x) \pi(y) = \sum_{i=1, \lambda_i \neq 0} \frac{|\mathcal{X}|}{\lambda_i}. $$
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit
 (i). Spectral theory
 (ii). Convergence to equilibrium
 (iii). Example: Ehrenfest model
 (iv). Cutoff phenomena

3 Metropolis-Hastings reversibilizations

4 Summary
The S class: Convergence to equilibrium

Two notations:
- Second largest eigenvalue in modulus of P:
 \[\lambda_* = \lambda_*(P) := \sup\{|\lambda| \in \sigma(P); \lambda \neq 1\} \]
- Second largest singular value of P:
 \[\sigma_* = \sigma_*(P) := \sqrt{\lambda_*(\hat{P})} \]

- $\lambda_* \leq \sigma_*$ (with equality holds if P is normal)
- For a general P,
 \[\lambda_*^n \leq \| P^n - \pi \|_{\ell^2(\pi) \to \ell^2(\pi)} \leq \sigma_*^n \]
- For a reversible P,
 \[\| P^n - \pi \|_{\ell^2(\pi) \to \ell^2(\pi)} = \lambda_*^n \]
The S class: Convergence to equilibrium

Theorem ($\ell^2(\pi)$ distance)

Let $P \in S$ with stationary distribution π. For $n \in \mathbb{N}$,

$$\lambda_*^n \leq \| P^n - \pi \|_{\ell^2(\pi) \to \ell^2(\pi)} \leq \sigma_*^n 1\{n<n^*\} + \kappa_\Lambda \lambda_*^n 1\{n\geq n^*\},$$

where $n^* = \left\lceil \frac{\ln \kappa_\Lambda}{\ln \sigma_* - \ln \lambda_*} \right\rceil$ and $\kappa_\Lambda = ||| \Lambda ||| \, ||| \Lambda^{-1} ||| \geq 1$ is the condition number of Λ.

A sufficient condition for which $\lambda_* < \sigma_*^n$ is given by $\max_i P(i,i) > \lambda_*$ using Sing-Thompson theorem.

Recall the notion of hypocoercivity (Villani '06), i.e. there exists a constant $C < \infty$ and $\rho \in (0,1)$ such that $\| P^n - \pi \|_{\ell^2(\pi) \to \ell^2(\pi)} \leq C \rho^n$. We provide an explicit spectral interpretation of the constant C by κ_Λ, and the convergence rate seems to be more involved.
Let $P \in \mathcal{S}$ with stationary distribution π. For $n \in \mathbb{N}$,

$$
\lambda_*^n \leq \|P^n - \pi\|_{\ell^2(\pi) \to \ell^2(\pi)} \leq \sigma_*^n 1\{n < n^*\} + \kappa_\Lambda \lambda_*^n 1\{n \geq n^*\},
$$

where $n^* = \lceil \frac{\ln \kappa_\Lambda}{\ln \sigma_* - \ln \lambda_*} \rceil$ and $\kappa_\Lambda = \|\Lambda\| \|\Lambda^{-1}\| \geq 1$ is the condition number of Λ.

• A sufficient condition for which $\lambda_* < \sigma_*$ is given by $\max_i P(i, i) > \lambda_*$ using Sing-Thompson theorem.
The S class: Convergence to equilibrium

Theorem ($\ell^2(\pi)$ distance)

Let $P \in S$ with stationary distribution π. For $n \in \mathbb{N}$,

$$\lambda_*^n \leq \|P^n - \pi\|_{\ell^2(\pi) \to \ell^2(\pi)} \leq \sigma_*^n \mathbf{1}\{n<n^*\} + \kappa_\Lambda \lambda_*^n \mathbf{1}\{n\geq n^*\},$$

where $n^* = \left\lceil \frac{\ln \kappa_\Lambda}{\ln \sigma_* - \ln \lambda_*} \right\rceil$ and $\kappa_\Lambda = |||\Lambda||| \, |||\Lambda^{-1}||| \geq 1$ is the condition number of Λ.

- A sufficient condition for which $\lambda_* < \sigma_*$ is given by $\max_i P(i, i) > \lambda_*$ using Sing-Thompson theorem.
- Recall the notion of hypocoercivity (Villani ’06), i.e. there exists a constant $C < \infty$ and $\rho \in (0, 1)$ such that

$$\|P^n - \pi\|_{\ell^2(\pi) \to \ell^2(\pi)} \leq C \rho^n.$$

We provide an explicit spectral interpretation of the constant C by κ_Λ, and the convergence rate seems to be more involved.
The S class: Convergence to equilibrium

Theorem (total variation distance)

Let $P \in S$ with stationary distribution π. For $n \in \mathbb{N}$,

$$
\| P^n(x, \cdot) - \pi \|_{TV} \leq \frac{1}{2} \sqrt{\frac{1 - \pi(x)}{\pi(x)}} \left(\sigma^*_n 1_{\{n<n^*\}} + \kappa \Lambda \lambda^*_n 1_{\{n \geq n^*\}} \right)
$$
The S class: Convergence to equilibrium

Theorem (total variation distance)

Let $P \in S$ with stationary distribution π. For $n \in \mathbb{N}$,

$$\| P^n(x, \cdot) - \pi \|_{TV} \leq \frac{1}{2} \sqrt{\frac{1 - \pi(x)}{\pi(x)}} \left(\sigma^*_n 1_{\{n < n^*\}} + \kappa_\Lambda \lambda^n 1_{\{n \geq n^*\}} \right)$$

Remark: Recall the notion of geometrically ergodicity (Kendall ’59, Meyn and Tweedie ’94, Baxendale ’05), i.e. there exists a constant $C_x < \infty$ and $\rho \in (0, 1)$ such that for $x \in E$ and $n \in \mathbb{N}$,

$$\| P^n(x, \cdot) - \pi \|_{TV} \leq C_x \rho^n$$

The constant κ_Λ provides an *explicit* and *computable* interpretation, and the rate of convergence seems to be more involved.
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit
 (i). Spectral theory
 (ii). Convergence to equilibrium
 (iii). Example: Ehrenfest model
 (iv). Cutoff phenomena

3 Metropolis-Hastings reversiblizations

4 Summary
Example: Ehrenfest model

- Ehrenfest model: a birth-death process \((Q_t)_{t \geq 0}\) on \([0, N]\) with parameter \(0 < p < 1\) and
 - birth rate \(\lambda_x = p(N - x)\)
 - death rate \(\mu_x = (1 - p)x\)
 - stationary distribution: binomial distribution \(\pi_Q\) with parameters \(N, p\)
 - eigenfunctions: Krawtchouk polynomials

\[
\phi_j(x) = 2F_1\left(\begin{array}{c}-j, -x \\ -N \end{array} \right| p^{-1}
\]

- spectral representation:

\[
Q_t(x, y) = \pi_Q(y) \sum_{j=0}^{N} e^{-jt} \phi_j(x) \phi_j(y) \frac{(-1)^{-j} p^j}{j!(1-p)^j} (-N)_j
\]
Example: Ehrenfest model

- Three orbits:
 - Permutation orbit Λ_σ
 - (Zhou ’08, Diaconis and Miclo ’15) Random walk orbit Λ_{rw}
 - (In thesis) Pure birth orbit Λ_{pb}
Example: Ehrenfest model

- Three orbits:
 - Permutation orbit $\Lambda_\sigma : \Lambda_\sigma = (1_{y=\sigma(x)})_{x,y \in \mathcal{X}}, \Lambda_\sigma^{-1} = \Lambda_\sigma^T$

 - (Zhou ’08, Diaconis and Miclo ’15) Random walk orbit Λ_{rw}: For $j = 1, 3, \ldots, 2N - 1$, the eigenvalue β_j, right eigenfunction ψ_j and left eigenfunction Ψ_j are given by

\[
\beta_j := \cos \left(\frac{j\pi}{2N + 1} \right), \quad \psi_j(x) := \cos \left(\frac{(2x + 1)j\pi}{2(2N + 1)} \right), \quad x \in [0, N],
\]

\[
\Psi_j(x) := \begin{cases}
\psi_j(x), & \text{for } x \in [0, N - 1], \\
\frac{(-1)^{(j+1)/2}}{2} \cot \left(\frac{j\pi}{2(2N + 1)} \right), & \text{for } x = N,
\end{cases}
\]

\[
\Lambda_{rw} = \sum_{j \in \{0,1,3,\ldots,2N-1\}} \beta_j \psi_j \Psi_j^T,
\]

- (In thesis) Pure birth orbit Λ_{pb}
Example: Ehrenfest model

<table>
<thead>
<tr>
<th></th>
<th>Permutation orbit Λ_σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Λ unitary?</td>
<td>✓</td>
</tr>
<tr>
<td>Is P_t reversible?</td>
<td>✓</td>
</tr>
</tbody>
</table>

Spectral representation of P_t

$$P_t(x, y) = \sum_{j=0}^{N} e^{-jt} f_j(x) f_j^*(y) \frac{(-1)^{-j} p^j}{j!(1 - p)^j} (-N)_j$$

<table>
<thead>
<tr>
<th>$f_j(x)$</th>
<th>$\phi_j(\sigma^{-1}(x))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_j^*(y)$</td>
<td>$\phi_j(\sigma^{-1}(y)) \pi Q(\sigma^{-1}(y))$</td>
</tr>
</tbody>
</table>

\[\|P_t - \pi\|_{\ell^2(\pi) \rightarrow \ell^2(\pi)} = e^{-t} = \kappa\Lambda_\sigma e^{-t} \]

\[\sum_{j=1}^{N} \frac{1}{j} \]

Eigentime identity
Example: Ehrenfest model

<table>
<thead>
<tr>
<th></th>
<th>Random walk orbit Λ_{rw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Λ unitary?</td>
<td>\times</td>
</tr>
<tr>
<td>Is P_t reversible?</td>
<td>\times</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectral representation of P_t</th>
<th>$P_t(x, y) = \sum_{j=0}^{N} e^{-jt} f_j(x) f_j^*(y) \frac{(-1)^{-j} p_j^j}{j!(1-p)_j} (-N)_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_j(x)$</td>
<td>discrete cosine transform of $(\beta_k^{-1} \langle \Psi_k, \phi_j \rangle)_{oddk}$</td>
</tr>
<tr>
<td>$f_j^*(y)$</td>
<td>$\sum_{k \in {0, 1, 3, \ldots, 2N-1}} \beta_k \langle \psi_k, \phi_j \rangle \pi \Psi_k(y)$</td>
</tr>
<tr>
<td>$|P_t - \pi|_{\ell^2(\pi) \to \ell^2(\pi)}$</td>
<td>$\leq \kappa_{\Lambda_{rw}} e^{-t}$</td>
</tr>
<tr>
<td>Eigentime identity</td>
<td>$\sum_{j=1}^{N} \frac{1}{j}$</td>
</tr>
</tbody>
</table>
Remarks:

- We can consider d-dimensional non-reversible chains via tensorized orbits, e.g.

\[P_t \Lambda^{\otimes d}_{rw} = \Lambda^{\otimes d}_{rw} Q_t, \]

where $(Q_t)_{t \geq 0}$ is a multivariate reversible Markov chain, e.g. generalized Bernoulli-Laplace (Khare and Zhou ’09), Dirichlet-multinomial Gibbs sampler (Khare and Zhou ’09), Griffiths and Spano ’13, Griffiths ’16...
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit
 (i). Spectral theory
 (ii). Convergence to equilibrium
 (iii). Example: Ehrenfest model
 (iv). Cutoff phenomena

3 Metropolis-Hastings reversiblizations

4 Summary
Cutoff phenomena

- Separation cutoff: generalizes the “spectral gap times mixing time going to infinity" criterion to a subclass $\mathcal{GMC} \subset S$.
- L^2-cutoff: generalizes the L^2-cutoff criteria for reversible chains to the class S using the Laplace transform cutoff criteria in Chen and Saloff-Coste ’09.
1. Introduction

2. Analysis of non-reversible Markov chains via similarity orbit

3. Metropolis-Hastings reversiblizations

4. Summary
9.4 Making reversible chains from irreversible chains

Let P be an irreducible transition matrix on I with stationary distribution π. The following straightforward lemma records several general ways in which to construct from P a transition matrix Q for which the associated chain still has stationary distribution π but is reversible. These methods all involve the time-reversed matrix P^*

$$\pi_i p_{ij} = \pi_j p^*_{ji}$$

and so in practice can only be used when we know π explicitly (as we have observed several times previously, in general we cannot write down a useful explicit expression for π in the irreversible setting).

Lemma 9.20 The following definitions each give a transition matrix Q which is reversible with respect to π.

- The additive reversiblization: $Q^{(1)} = \frac{1}{2}(P + P^*)$
- The multiplicative reversiblization: $Q^{(2)} = PP^*$
- The Metropolis reversiblization: $Q^{(3)}_{i,j} = \min(p_{i,j}, p^*_{j,i}), j \neq i$.

The Metropolis reversiblization is highlighted in red.
The Metropolis reversiblization

Definition (Classical MH kernel)

The first MH chain, with transition kernel denoted by $M_1 := M_1(P)$, is the MH kernel with proposal kernel P and target distribution π. That is, let

$$\alpha_1(x, y) = \begin{cases} \min \left(\frac{\pi(y)p(y, x)}{\pi(x)p(x, y)}, 1 \right) & \text{if } \pi(x)p(x, y) > 0, \\ 0 & \text{otherwise,} \end{cases}$$

$$m_1(x, y) = \alpha_1(x, y)p(x, y) = \min\{\tilde{p}(x, y), p(x, y)\},$$

$$r_1(x) = \int_{y \neq x} (1 - \alpha_1(x, y))p(x, y)\mu(dy),$$

then M_1 is given by

$$M_1(x, dy) = m_1(x, y)\mu(dy) + r_1(x)\delta_x(dy).$$
Metropolis-Hastings reversiblizations

Nothing new so far...
Definition (The second MH kernel)

The second MH kernel M_2 and density m_2 are given by

\[
m_2(x, y) = \max\{\hat{p}(x, y), p(x, y)\},
\]

\[
M_2(x, dy) = m_2(x, y)\mu(dy) - r_1(x)\delta_x(dy).
\]
Metropolis-Hastings reversibilizations

Definition (The second MH kernel)

The second MH kernel M_2 and density m_2 are given by

$$m_2(x, y) = \max\{\hat{p}(x, y), p(x, y)\},$$

$$M_2(x, dy) = m_2(x, y)\mu(dy) - r_1(x)\delta_x(dy).$$

Lemma

1. $P + \hat{P} = M_1 + M_2$.
2. M_1 and M_2 are self-adjoint bounded operators on $L^2(\pi)$.
3. $M_1 = M_2 = P$ if and only if P is reversible with respect to π.
4. $M_i(P) = M_i(\hat{P})$ for $i = 1, 2$.

Remark: Note that M_2 may not even be a contraction kernel.
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversiblizations
 (i). Weyl’s inequality
 (ii). Comparison theorem
 (iii). MH-spectral gap
 (iv). Variance bounds

4 Summary
Suppose that \mathcal{X} is a finite state space with $n = |\mathcal{X}|$, and arrange eigenvalues of a symmetric matrix M in non-increasing order by $\lambda_1(M) \geq \ldots \geq \lambda_n(M)$.

Theorem (Weyl’s inequality for additive reversiblization)

1. For $i, j, k \in [n]$ and $i + 1 = j + k$,
 \[\lambda_i(P + \hat{P}) \leq \lambda_j(M_1) + \lambda_k(M_2). \]

2. For $i, l, m \in [n]$ and $i + n = l + m$,
 \[\lambda_i(P + \hat{P}) \geq \lambda_l(M_1) + \lambda_m(M_2). \]
Weyl’s inequality

Corollary (Spectral gap bound via Weyl’s inequality)

Denote

\[
L := \max_{l+m=2+n} \{\lambda_l(M_1) + \lambda_m(M_2)\},
\]

\[
U := \min_{j+k=3} \{\lambda_j(M_1) + \lambda_k(M_2)\}.
\]

Then

\[
1 - \frac{1}{2} U \leq \gamma(P) \leq 1 - \frac{1}{2} L.
\]

Remark: This bound is tight for asymmetric \((p, q)\) simple random walk on \(n\)-cycle, which gives

\[
1 - \frac{1}{2} U = \max\{p, q\}(1 - \cos(2\pi/n)) \leq 1 - \cos(2\pi/n) = \gamma(P) = 1 - \frac{1}{2} L.
\]

More examples can be found in the thesis.
Corollary

If P is a lazy and ergodic Markov kernel on a finite state space, then M_2 is a contraction kernel.
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversiblizations
 (i). Weyl’s inequality
 (ii). Comparison theorem
 (iii). MH-spectral gap
 (iv). Variance bounds

4 Summary
Comparison theorem

Theorem

For real-valued function $f \in L^2(\pi)$,

$$\langle M_2 f, f \rangle_\pi \leq \langle Pf, f \rangle_\pi \leq \langle M_1 f, f \rangle_\pi.$$

In particular,

$$\lambda(M_2) \leq \lambda(M_1), \quad \Lambda(M_2) \leq \Lambda(M_1),$$

where for $i = 1, 2,$

$$\lambda(M_i) := \inf\{\alpha : \alpha \in \sigma(M_i), \alpha < 1\},$$

$$\Lambda(M_i) := \sup\{\alpha : \alpha \in \sigma(M_i), \alpha < 1\}.$$
Remarks:

- $\langle Pf, f \rangle_\pi \leq \langle M_1 f, f \rangle_\pi$ is known as Peskun ordering in MCMC.

- This kind of inequality is more generally known as comparison theorems of Markov chains - Diaconis and Saloff-Coste '93, Dyer et al. '06

- This allows us to state a variant of Cheeger’s inequality for non-reversible chains.
(Higher-order) Cheeger’s inequality

Theorem (Lee et al. ’12, Wang ’14, Miclo ’15)

Suppose that P is the transition kernel of a reversible finite Markov chain with eigenvalues $1 = \lambda_1 \geq \ldots \geq \lambda_n$. For $k \in [n]$, \[
\frac{1 - \lambda_k}{2} \leq \Phi_*(k) \leq O(k^4) \sqrt{1 - \lambda_k},
\]
where $\Phi_*(k)$ is the k-way expansion defined to be

\[
\Phi_*(k) := \min_{(A_1,\ldots,A_k) \in \mathcal{D}_k} \max_{i \in [k]} \frac{\langle P1_{A_i}, 1_{A_i^c} \rangle_\pi}{\langle 1_{A_i}, 1_{A_i} \rangle_\pi},
\]

and \mathcal{D}_k is the set of k-uples of disjoint and π-non-negligible subsets of X.
Corollary

For non-reversible P and $k \in [n]$,

$$\frac{1 - \lambda_k(M_1)}{2} \leq \Phi_*(k) \leq O(k^4)\sqrt{1 - \lambda_k(M_2)}.$$
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversiblizations
 (i). Weyl’s inequality
 (ii). Comparison theorem
 (iii). MH-spectral gap
 (iv). Variance bounds

4 Summary
MH-spectral gap

Suppose that P is the transition kernel of a non-reversible chain with time-reversal \hat{P} on a finite state space with stationary distribution π and spectral gap $\gamma(P)$.

$$||P^n(x, \cdot) - \pi||_{TV} \leq C_x\beta^n,$$

where β can be (possibly with a different C_x):

- $\sigma_*(P)$ (Fill ’91)
- $1 - \gamma((P + \hat{P})/2)$ for lazy chain (Fill ’91)
- $\sqrt{1 - \gamma_{ps}}$ with $\gamma_{ps} = \max_{k \geq 1} \gamma(\hat{P}^k P^k)/k$ (”Pseudo” spectral gap, Paulin ’15)
- We now propose a gap based on M_1 and M_2.
MH-spectral gap

Definition (MH-spectral gap)

Denote

\[
\mathcal{C} := \{ n \in \mathbb{N} : |\lambda(M_2(P^n))| < 1, \Lambda(M_1(P^n)) < 1 \},
\]

\[
\beta_{MH} := \sup_{n \in \mathcal{C}} \{ |\lambda(M_2(P^n))|^{1/n}, \Lambda(M_1(P^n))^{1/n} \}.
\]

The MH-spectral gap \(\gamma_{MH} = \gamma_{MH}(P) \) is given by

\[
\gamma_{MH} := 1 - \beta_{MH}.
\]

Remark: For reversible \(P \), \(\gamma_{MH} = \gamma \), the classical \(L^2 \)-spectral gap.
MH-spectral gap

Theorem

If $|C^c| < \infty$, then for all $n \in \mathbb{N}$ and $x \in \mathcal{X}$,

$$\|P^n(x, \cdot) - \pi\|_{TV} \leq C_x(\beta_{MH}^n)^n.$$

Remark: In some (but not all) numerical examples, the convergence rate β_{MH} outperform the rate of Fill ’91 and Paulin ’15. See the thesis.
MH-spectral gap

Non-reversible Markov chain on triangle (Montenegro and Tetali ’06)

\[||P^n(x, \cdot) - \pi||_{TV} \leq C_x \beta^n \]

where \(\beta \) can be

- \(\sigma_*(P) = 1 \) (Fill ’91)
- \(1 - \gamma((P + \hat{P})/2) \) for lazy chain (Fill ’91)
- \(\sqrt{1 - \gamma_{ps}} = 0.866 \) (Paulin ’15)
- \(\beta^{MH} = 0.849 \) 😊
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversibilizations
 (i). Weyl’s inequality
 (ii). Comparison theorem
 (iii). MH-spectral gap
 (iv). Variance bounds

4 Summary
Variance bounds

Theorem (Variance bounds for reversible chains)

For reversible P and $f \in L^2(\pi)$,

$$V_f := \text{Var}_\pi(f),$$

$$\sigma_{as}^2 := \lim_{n \to \infty} \frac{1}{n} \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right).$$

Then,

$$\text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) \leq n V_f \left(\frac{2}{\gamma} \right),$$

$$\left| \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) - n \sigma_{as}^2 \right| \leq V_f \left(\frac{4}{\gamma^2} \right).$$
Theorem (Variance bounds for non-reversible chains, Paulin ’15)

For non-reversible P and $f \in L^2(\pi)$,

$$V_f := \text{Var}_\pi(f),$$

$$\sigma^2_{as} := \lim_{n \to \infty} \frac{1}{n} \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right).$$

Then,

$$\text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) \leq nV_f \left(\frac{4}{\gamma_{ps}} \right),$$

$$\left| \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) - n\sigma^2_{as} \right| \leq V_f \left(\frac{16}{\gamma_{ps}^2} \right).$$
Variance bounds

Theorem (Variance bounds for non-reversible chains)

For non-reversible P and $f \in L^2(\pi)$,

\[V_f := \text{Var}_\pi(f), \]
\[\sigma^2_{as} := \lim_{n \to \infty} \frac{1}{n} \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right). \]

Then,

\[\text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) \leq n V_f \left(|C^c| + \frac{4}{\gamma_{MH}} \right), \]
\[\left| \text{Var}_\pi \left(\sum_{i=1}^{n} f(X_i) \right) - n \sigma^2_{as} \right| \leq V_f 4 \left(1 + |C^c| + \frac{4(\beta_{MH}|C^c|+1)}{\gamma_{MH}} \right)^2. \]
1 Introduction

2 Analysis of non-reversible Markov chains via similarity orbit

3 Metropolis-Hastings reversiblizations

4 Summary
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversibilizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversibilizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversibilizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 • Spectral theory and functional calculus for Markov chains in this S class
 • Eigentime identity
 • Convergence to equilibrium
 • Separation and L^2-cutoff
 • New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 • Weyl’s inequality
 • Comparison theorem
 • MH-spectral gap
 • Variance bounds
1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
Summary

1. Similarity orbit of normal Markov chains
 - Spectral theory and functional calculus for Markov chains in this S class
 - Eigentime identity
 - Convergence to equilibrium
 - Separation and L^2-cutoff
 - New non-reversible examples with known spectral expansion, eigenfunction and stationary distribution

2. Metropolis-Hastings reversiblizations
 - Weyl’s inequality
 - Comparison theorem
 - MH-spectral gap
 - Variance bounds
This talk is based on

Thank you! Question(s)?