
Markov chain mixing time Introduction

Lecture 1-2

Lecturer: Michael Choi Scribe: Michael Choi

1 Goal of this lecture

In this lecture, we review essential concepts and introduce basic definitions and techniques
in Markov chains mixing time. Most of the material in this lecture is taken from Levin
et al. (2009).

2 Random mapping representation of Markov chain

A Markov chain is a process which moves among the elements of a set X in the following
manner: when at x ∈ X , the next position is chosen according to a fixed probability
distribution P (x, ·) depending only on x. More precisely, a sequence of random variables
X = (X0, X1, X2, . . .) is a Markov chain on state space X with transition matrix P if for all
x, y ∈ X , all events Hn−1 = ∩n−1s=0 {Xs = xs} satisfying P(Hn−1 ∩ {Xn = x}) > 0, we have

P(Xn+1 = y|Hn−1 ∩ {Xn = x}) = P(Xn+1 = y|Xn = x) = P (x, y).

This property is called the Markov property. The x-th row of P is the distribution
P (x, ·), and P is stochastic, that is, its entries are all non-negative and∑

y∈X
P (x, y) = 1.

A random mapping representation of P is a function f : X × Λ → X , along with
a Λ-valued random variable Z, satisfying P(f(x, Z) = y) = P (x, y) for all x, y ∈ X . Our
first result below says that we can consider X as a random mapping representation with
appropriate f and Z:

Theorem 1 Every Markov chain on X has a random mapping representation.

Proof: Take Z to be uniform random variable on (0, 1). For any i, j ∈ X , set

Fi,j =

j∑
m=1

P (i,m) .

Define
f(i, z) := j when Fi,j−1 < z ≤ Fi,j .

We have
P(f(i, Z) = j) = P(Fi,j−1 < Z ≤ Fi,j) = P (i, j) .
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3 Ergodic theorem of Markov chain

X is said to be irreducible if for any two states x, y ∈ X , there exists an integer n, possibly
depending on x and y, such that Pn(x, y) > 0. Let T (x) := {n ≥ 1; Pn(x, x) > 0} be the
set of times that is possible to return to the starting state x. The period of x is the greatest
common divisor of T (x). X is said to be aperiodic if all states have period 1.

We will make use of the following fact to prove the ergodic theorem of Markov chain:

Fact 1 Let X be an irreducible and aperiodic Markov chain on a finite state space X . Then
there exists an integer r0 such that for all r ≥ r0 and for all x, y ∈ X ,

P r(x, y) > 0.

π is said to be a stationary distribution of X if πP = π. In the following, we would
like to quantify the speed of convergence of Pn to π. Before we do that, we first introduce
the total variation metric that will be used to quantify the distance between distributions:

Definition 1 The total variation distance between two probabilities µ and ν on X is defined
as

||µ− ν||TV :=
1

2

∑
s∈X
|µ(s)− ν(s)| .

We can verify that the above definition defines a metric, and we have the following
equivalent characterizations:

Proposition 2 1.
||µ− ν||TV = max

A⊆X
|µ(A)− ν(A)| .

2.
||µ− ν||TV = max

µ(x)≥ν(x)

∑
x∈X

µ(x)− ν(x) .

3.
||µ− ν||TV = inf{P(X 6= Y ); (X,Y ) is a coupling of (µ, ν)} .

Theorem 3 (Convergence theorem) Suppose that P is irreducible and aperiodic with
stationary distribution π. Then there exist constants α ∈ (0, 1) and C > 0 such that

max
x∈X
||Pn(x, ·)− π||TV ≤ Cαn.

Proof: Since P is irreducible and aperiodic, there exists r such that P r has strictly
positive entries by Fact 1. Let Π be the matrix with constant row given by π. For sufficiently
small δ > 0, we have

Pn(x, y) ≥ δπ(y)

for all x, y ∈ X . Let θ = 1− δ. The equation

P r = (1− θ)Π + θQ
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defines a stochastic matrix Q.
Note that for any stochastic matrix M , MΠ = Π. For M such that πM = π, we have

ΠM = Π.
Next, we prove by induction on k ≥ 1 that

P rk = (1− θk)Π + θkQk.

Clearly, when k = 1, the statement is true. Now, we consider

P r(k+1) = P rkP r = (1− θk)ΠP r + θkQkP r

= (1− θk)Π + θkQk ((1− θ)Π + θQ)

= (1− θk)Π + θk(1− θ)Π + θk+1Qk+1

= (1− θk+1)Π + θk+1Qk+1.

Multiplying P j with 0 ≤ j ≤ r gives

P rk+j −Π = θk(QkP j −Π).

Now, we sum the absolute values of the elements and divided by 2. On the left, we have
||P rk+j(x, ·)− π||TV , thus

||P rk+j(x, ·)− π||TV ≤ θk||QkP j(x, ·)− π||TV ≤ θk = θ−j/rθ
rk+j

r ≤ Cαrk+j ,

where we take C = θ−1 and α = θ1/r. 2

Remark 1 There are many proofs for the convergence theorem. Another classic proof relies
on the notion of coupling. We run two independent Markov chains (Xn) and (Yn), where
X0 ∼ δx is the Dirac mass at x and Y0 ∼ π. Let τcouple be the coalescence time of the two
chains, that is,

τcouple := inf{n; Xs = Ys for s ≥ n}.

Then we have
||Pn(x, ·)− π||TV ≤ P(τcouple > n).

Then it remains to prove that τcouple is finite almost surely.

4 Markov chain mixing time

We are interested in

d(n) := max
x∈X
||Pn(x, ·)− π||TV

d(n) := max
x,y∈X

||Pn(x, ·)− Pn(y, ·)||TV

Lemma 4 1.
d(n) ≤ d(n) ≤ 2d(n).
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2. The function d is submultiplicative, that is, d(m+ n) ≤ d(m)d(n).

Proof: We first prove item 1. Using triangle inequality, it is easy to see that d(n) ≤
2d(n). Next, for arbitrary x ∈ X and set A, we have

|Pn(x,A)− π(A)| =

∣∣∣∣∣∑
y

π(y) (Pn(x,A)− Pn(y,A))

∣∣∣∣∣
≤
∑
y

π(y)||Pn(x, ·)− Pn(y, ·)||TV ≤ d(n).

Maximizing the left hand side over x and A yields d(n) ≤ d(n).
Next, we prove item 2. Fix x, y ∈ X , and let (Xm, Ym) be the optimal coupling between

Pm(x, ·) and Pm(y, ·) such that

||Pm(x, ·)− Pm(y, ·)||TV = P(Xm 6= Ym).

Since
Pm+n(x,w) = Ex(Pn(Xm, w)),

summing over w ∈ A leads to

Pm+n(x,A)− Pm+n(y,A) = E(x,y) (Pn(Xm, A)− Pn(Ym, A))

≤ E(x,y)

(
d(n)1{Xm 6=Ym}

)
= d(n)d(m),

where 1A is the indicator function of the set A. 2

It is useful to introduce a parameter which measures the time required by a Markov
chain for the distance to stationarity to be small. The mixing time is defined to be, for
ε > 0,

tmix(ε) := inf{n ≥ 0; d(n) ≤ ε}.

A commonly used mixing time parameter is that we take ε = 1/4, and define

tmix := tmix(1/4).

If l is a positive integer, then

d(ltmix(ε)) ≤ d(ltmix(ε)) ≤ d(tmix(ε))l ≤ (2ε)l.

Taking ε = 1/4 yields

d(ltmix) ≤ 2−l, tmix(ε) ≤ dlog2(ε
−1)etmix.
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5 Spectral bounds of mixing time for reversible Markov chains

In Theorem 3, the constants C and α cannot be readily computed to give bounds on tmix.
In this section, we will prove computable spectral bounds on tmix for reversible Markov
chains.

The transition matrix P is said to be reversible with respect to the stationary distri-
bution π if for all x, y ∈ X , the detailed balance condition is satisfied, i.e. π(x)P (x, y) =
π(y)P (y, x). Denote by 〈·, ·〉 the usual inner product on RX , given by 〈f, g〉 =

∑
x∈X f(x)g(x).

We will also need another inner product, denoted by 〈·, ·〉π and defined by

〈f, g〉π :=
∑
x∈X

f(x)g(x)π(x) (1)

We write `2(π) for the vector space RX equipped with the inner product (1). We begin
with a useful fact on the eigenvalues of a general (not necessarily reversible) Markov chain:

Fact 2 Let P be the transition matrix of a finite Markov chain.

1. If λ is an eigenvalue of P , then |λ| ≤ 1.

2. If P is ergodic (i.e. irreducible and aperiodic), then the eigenvalue 1 has both algebraic
and geometric multiplicity of 1, and −1 is not an eigenvalue of P .

Proof: We first prove item 1. Let ||f ||∞ := maxx∈X |f(x)|, then ||Pf ||∞ ≤ ||f ||∞. Now,
we take f to be the eigenfunction of λ.

Item 2 follows directly from the Perron-Frobenius theorem. 2

Theorem 5 (spectral decomposition of reversible Markov chain) Let P be reversible
with respect to π.

1. The inner product space
(
RX , 〈·, ·〉π

)
has an orthonormal basis of real-valued eigen-

functions {fj}|X |j=1 corresponding to real eigenvalues {λj}.

2. The matrix P can be decomposed as

P t(x, y)

π(y)
=

|X |∑
j=1

fj(x)fj(y)λtj .

3. The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be the constant
vector 1, in which case

P t(x, y)

π(y)
= 1 +

|X |∑
j=2

fj(x)fj(y)λtj .

Proof: We first prove item 1. We write Dπ to be the diagonal matrix with diag-

onal entries π, that is, Dπ(x, x) = π(x) for x ∈ X , and define A := D
1/2
π PD

−1/2
π , i.e.
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A(x, y) = π(x)1/2π(y)−1/2P (x, y) for all x, y ∈ X . Reversibility of P implies A is symmet-
ric, and the spectral theorem for symmetric matrices guarantees that the inner product space(
RX , 〈·, ·〉

)
has an orthonormal basis of real-valued eigenfunctions {ϕj}|X |j=1 corresponding to

real eigenvalues {λj}.
If fj := D

− 1
2

π ϕj , then fj is an eigenfunction of P with eigenvalue λj :

Pfj = PD
− 1

2
π ϕj = D

− 1
2

π

(
D

1
2
πPD

− 1
2

π

)
ϕj = D

− 1
2

π Aϕj = D
− 1

2
π λjϕj = λjfj .

Although the eigenfunctions {fj} are not necessarily orthonormal with respect to the usual
inner product, they are orthonormal with respect to the inner product since 〈·, ·〉π since

δij = 〈ϕi, ϕj〉 = 〈D1/2
π fi, D

1/2
π fj〉 = 〈fi, fj〉π.

This proves item 1.
Next, we prove item 2. Let δy be the function

δy(x) =

{
1 if y = x,
0 if y 6= x.

Considering
(
RX , 〈·, ·〉π

)
with its orthonormal basis of eigenfunctions {fj}|X |j=1 , the function

δy can be written via basis decomposition as

δy =

|X |∑
j=1

〈δy, fj〉π fj =

|X |∑
j=1

fj(y)π(y)fj .

Since P tfj = λtjfj and P t(x, y) =
(
P tδy

)
(x),

P t(x, y) =

|X |∑
j=1

fj(y)π(y)λtjfj(x).

Divide by π(y) completes the proof of item 2. Item 3 follows from item 2 and f1 = 1. 2

Define
λ? := max{|λ| : λ is an eigenvalue of P, λ 6= 1}.

Some people call λ? the second largest eigenvalue in modulus (SLEM). The difference
γ? := 1 − λ? is called the absolute spectral gap. Fact 2 implies that if P is aperiodic
and irreducible, then γ? > 0. For a reversible ergodic transition matrix P , we label the
eigenvalues of P in decreasing order:

1 = λ1 > λ2 ≥ · · · ≥ λ|X | > −1

The spectral gap of a reversible chain is defined by γ := 1 − λ2. The relaxation time
trel of a reversible Markov chain with absolute spectral gap γ? is defined to be

trel :=
1

γ?
.

We are now ready to relate mixing time with relaxation time:
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Theorem 6 (Spectral upper bound of mixing time) Let P be the transition matrix
of a reversible and ergodic Markov chain on state space X , and let πmin := minx∈X π(x).
Then

tmix(ε) ≤ trel log

(
1

επmin

)
.

Proof: By Theorem 5 item 3 and the Cauchy-Schwartz inequality, we have

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ |X |∑
j=2

|fj(x)fj(y)|λt? ≤ λt?

 |X |∑
j=2

f2j (x)

|X |∑
j=2

f2j (y)

1/2

. (2)

Using the orthonormality of {fj} shows that

π(x) = 〈δx, δx〉π =

〈 |X |∑
j=1

fj(x)π(x)fj ,

|X |∑
j=1

fj(x)π(x)fj

〉
π

= π(x)2
|X |∑
j=1

fj(x)2.

Consequently,
∑|X |

j=2 fj(x)2 ≤ π(x)−1. This bound and (2) imply that∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt?√
π(x)π(y)

≤ λt?
πmin

=
(1− γ?)t

πmin
≤ e−γ?t

πmin
.

2

Theorem 7 (Spectral lower bound of mixing time) Let P be the transition matrix of
a reversible ergodic Markov chain on state space X , and suppose that λ 6= 1 is an eigenvalue
of P . Then

tmix(ε) ≥
(

1

1− |λ|
− 1

)
log

(
1

2ε

)
.

In particular,

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
.

Proof: We may assume that λ 6= 0. Suppose that Pf = λf with λ 6= 1. Since
Eπ(f) = 〈1, f〉π = 0, it follows that

∣∣λtf(x)
∣∣ =

∣∣P tf(x)
∣∣ =

∣∣∣∣∣∣
∑
y∈X

[
P t(x, y)f(y)− π(y)f(y)

]∣∣∣∣∣∣ ≤ ‖f‖∞2d(t).

Taking x with |f(x)| = ‖f‖∞ yields

|λ|t ≤ 2d(t).

Therefore, |λ|tmix(ε) ≤ 2ε, whence

tmix(ε)

(
1

|λ|
− 1

)
≥ tmix(ε) log

(
1

|λ|

)
≥ log

(
1

2ε

)
.

2
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