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1 Goal of this lecture

In previous lecture, we have seen that the rate of convergence of reversible Markov chain is
determined by SLEM (second largest eigenvalue in modulus). In this lecture, we introduce
modern techniques in bounding SLEM, and hence mixing time.

2 Preliminaries - graph theoretic concepts

Suppose that P is the transition matrix of a reversible ergodic Markov chain X. We first
introduce a few graph-theoretic quantities induced by the transition graph of P . For all
i, j ∈ X , we define

Q(i, j) = Q(P )(i, j) := π(i)P (i, j).

Note that Q is symmetric since P is self-adjoint in `2(π). The transition graph induced by
P has a vertex set equals to X and e = (i, j) is an edge if Q(e) = Q(i, j) 6= 0. For any two
distinct vertex i, j ∈ X , we select only one path from i to j, that is a sequence i, i1, . . . , im, j
such that P (i, i1)P (i1, i2) . . . P (im, j) > 0. We pick the path such that a given edge appears
at most once. Irreducibility of P guarantees such a path exists. Denote by Γ = Γ(P ) to be
the collection of paths selected. For a path γij ∈ Γ, we define

|γij |Q :=
∑
e∈γij

1

Q(e)
.

The Poincaré coefficient of P is then

κ(Γ) = κ(P,Γ) := max
e

∑
γij3e

|γij |Qπ(i)π(j).

For each i ∈ X , we select one closed path σi = σi(P ) from i to i with an odd number of
edges and any given edge appears at most once. Denote by Σ = Σ(P ) to be the collection
of all such closed paths. For a path σi ∈ Σ, we define

|σi|Q :=
∑
e∈σi

1

Q(e)
,

α(Σ) = α(P,Σ) := max
e

∑
σi3e
|σi|Qπ(i).

The final quantity of interest is the notion of conductance of P . For any subset S ⊆ X ,
define

Q(S × Sc) :=
∑

i∈S,j∈Sc
Q(i, j) =

∑
i∈S,j∈Sc

π(i)P (i, j),
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where Sc is the complement of S in X . The conductance h = h(P ) is then given by

h = h(P ) := inf
S;0<π(S)≤1/2

Q(S × Sc)
π(S)

.

3 Poincaré and Cheeger’s inequality for bounding SLEM

Theorem 1 (Bounds on SLEM of P ) Suppose that P is a reversible ergodic transition
matrix with stationary distribution π and eigenvalues 1 = λ1(P ) > λ2(P ) ≥ . . . ≥ λ|X |(P ).
Then we have

1. (Poincaré inequality for P )

λ2(P ) ≤ 1− 1

κ(P,Γ)
.

2. (Cheeger’s inequality for P )

1− 2h(P ) ≤ λ2(P ) ≤ 1− h(P )2

2
.

3. (Lower bound on λ|X |(P ))

λ|X |(P ) ≥ −1 +
2

α(P,Σ)
.

3.1 Proof of Theorem 1 item (1) Poincaré inequality

We follow the proof of (Diaconis and Stroock, 1991, Proposition 1) and (Brémaud, 1999,
Theorem 4.1). We note that, for f ∈ `2(π),

Varπ(f) =
1

2

∑
i,j

(f(i)− f(j))2π(i)π(j)

=
1

2

∑
i,j

 ∑
e=(e−,e+)∈γij

√
Q(e)

Q(e)
(f(e−)− f(e+))

2

π(i)π(j)

≤ 1

2

∑
i,j

|γij |Q

 ∑
e=(e−,e+)∈γij

Q(e)(f(e−)− f(e+))2

π(i)π(j)

=
1

2

∑
e=(e−,e+)

Q(e)(f(e−)− f(e+))2
∑
γij3e

|γij |Qπ(i)π(j) ≤ κ(P,Γ)〈(I − P )f, f〉π,

where the inequality follows from Cauchy-Schwarz inequality. Upon rearranging and taking
infimum over non-trivial f with mean 0 under stationarity (i.e. Eπf = 0), desired result
follows. That is,

1

κ(P,Γ)
≤ inf

f 6=0:Eπf=0

〈(I − P )f, f〉π
Varπ(f)

= 1− λ2(P ).
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3.2 Proof of Theorem 1 item (3) lower bound on λ|X |(P )

We follow the proof of (Diaconis and Stroock, 1991, Proposition 2) and (Brémaud, 1999,
Theorem 4.2). First, we note that

1

2

∑
i,j

(f(i) + f(j))2Q(i, j) = 〈Pf, f〉π + 〈f, f〉π.

If σi is a path of the form (i0 = i, i1, i2, . . . , i2m, i) with odd number of edges, then

f(i) =
1

2
((f(i0) + f(i1))− (f(i1) + f(i2)) + . . .+ (f(i2m) + f(i)))

=
1

2

∑
e=(e−,e+)∈σi

(−1)n(e)(f(e−) + f(e+)),

where n(e) = k if e = (ik, ik+1). As a result, using Cauchy-Schwarz inequality again we
have

〈f, f〉π =
∑
i

π(i)

4

 ∑
e=(e−,e+)∈σi

√
Q(e)

Q(e)
(−1)n(e)(f(e−) + f(e+))

2

≤
∑
i

π(i)

4
|σi|Q

 ∑
e=(e−,e+)∈σi

Q(e)(f(e−) + f(e+))2


=

1

4

∑
e=(e−,e+)

Q(e)(f(e−) + f(e+))2

(∑
σi3e
|σi||Q|π(i)

)

≤ α(P,Σ)

4

∑
e=(e−,e+)

Q(e)(f(e−) + f(e+))2

=
α(P,Σ)

2
(〈Pf, f〉π + 〈f, f〉π) .

Desired result follows from the variational characterization of the smallest eigenvalue of P .

3.3 Proof of Theorem 1 item (2) Cheeger’s inequality for P

We follow the proof of (Brémaud, 1999, Theorem 4.3). We first prove the lower bound of
item (2). Using the variational characterization of λ2(P ), for any f ∈ `2(π) with f 6= 0 and
Eπf = 〈1, f〉π = 0, we have

1− λ2(P ) ≤ 〈(I − P )f, f〉π
〈f, f〉π

.

For any subset S ⊂ X such that 0 < π(S) ≤ 1/2, we take f to be

f(i) =

{
1− π(S), if i ∈ S;

−π(S), if i /∈ S.
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It can be checked that 〈1, f〉π = 0 and 〈f, f〉π = π(S)(1− π(S)). In addition,

〈(I − P )f, f〉π =
1

2

∑
i,j

Q(i, j)(f(j)− f(i))2 =
1

2

∑
i∈S

∑
j∈Sc

Q(i, j) +
1

2

∑
i∈Sc

∑
j∈S

Q(i, j)

=
1

2
Q(S × Sc) +

1

2
Q(Sc × S)

= Q(S × Sc),

where the last equality follows from Q(i, j) = Q(j, i) as P is self-adjoint in `2(π). Collecting
the above results give

1− λ2(P ) ≤ Q(S × Sc)
π(S)(1− π(S))

≤ 2
Q(S × Sc)
π(S)

.

Since this holds for any subset S ⊂ X such that 0 < π(S) ≤ 1/2, minimizing over all such
S gives the desired result.

Next, we prove the upper bound in item (2). Let u be a left eigenvector of P associated
with eigenvalue λ 6= 1, and note that u is orthogonal to π, the eigenvector associated with
1. As a result u must have both positive and negative entries, and so does f defined via

f(i) :=
u(i)

π(i)
.

Assume without loss of generality that for some k ∈ {1, 2, . . . , |X |}, we have

f(1) ≥ f(2) ≥ . . . ≥ f(k) > 0 ≥ f(k + 1) . . . ≥ f(|X |),

and that for S := {1, 2, . . . , k} we have π(S) ≤ 1/2. This can be done by changing the
order of the states. For the second assumption, we can change f into −f if necessary. Now,
define y to be

y(i) :=
u(i)

π(i)
1{u(i)>0},

where 1A is the indicator function of the set A. Note that

uT (I − P )y = (1− λ)uT y = (1− λ)
∑
i∈S

y(i)2π(i) = (1− λ)〈y, y〉π. (1)

On the other hand, by definition we see

uT (I − P )y =
∑
i∈S

∑
j∈X

(1{i=j} − P (j, i))u(j)y(i)

≥
∑
i∈S

∑
j∈S

(1{i=j} − P (j, i))u(j)y(i)

= 〈y, (I − P )y〉π =
∑
i<j

Q(i, j)(y(i)− y(j))2, (2)
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where in the inequality we observe the missing terms −P (j, i)f(j)y(i) for i ∈ S and j ∈ Sc
are non-negative. For a, b ∈ R, using (a+ b)2 ≤ 2(a2 + b2), together with the symmetry of
Q and P (i, j) ≤ 1 for all i 6= j, we have∑

i<j

Q(i, j)(y(i) + y(j))2 ≤ 2
∑
i<j

Q(i, j)(y(i)2 + y(j)2)

= 2

∑
i<j

Q(i, j)y(i)2 +
∑
i<j

Q(j, i)y(j)2


= 2

∑
i 6=j

π(i)P (i, j)y(i)2 ≤ 2〈y, y〉π (3)

Collecting the above equations (1), (2) and (3) yield

1− λ ≥
∑

i<j Q(i, j)(y(i)− y(j))2

〈y, y〉π

∑
i<j Q(i, j)(y(i) + y(j))2

2〈y, y〉π

≥ 1

2

(∑
i<j Q(i, j)(y(i)2 − y(j)2)

〈y, y〉π

)2

. (4)

Define Sl := {1, 2, . . . , l}. We calculate∑
i<j

Q(i, j)(y(i)2 − y(j)2) =
∑
i<j

Q(i, j)
∑
i≤l<j

(y(l)2 − y(l + 1)2)

=
k∑
l=1

(y(l)2 − y(l + 1)2)
∑

i∈Sl,j /∈Sl

π(i)P (i, j)

=

k∑
l=1

(y(l)2 − y(l + 1)2)Q(Sl × Scl )

≥ h(P )
k∑
l=1

(y(l)2 − y(l + 1)2)π(Sl)

= h(P )
k∑
l=1

(y(l)2 − y(l + 1)2)
l∑

i=1

π(i)

= h(P )
k∑
i=1

π(i)
k∑
l=i

(y(l)2 − y(l + 1)2)

= h(P )

k∑
i=1

π(i)y(i)2, (5)

where the inequality comes from the definition of h(P ) with 0 < π(Sl) ≤ π(S) ≤ 1/2.
Desired result can be obtained via collecting (4) and (5).
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4 Example: random walk on graph

Consider an undirected graph G = (V,E), where V is the set of vertices and E is the set
of edges. We write y ∼ x if y is a neighbour of x. A simple random walk on the graph G
with state space X = V has transition matrix given by

P (x, y) =

{ 1
dx
, if y ∼ x,

0, otherwise .

The stationary distribution is π(x) = dx
2|E| , and it can be checked that the random walk is

reversible with respect to π. Let d := maxx dx be the maximum degree, |γ|Q := maxi,j |γij |Q
and

B := max
e
|{γ ∈ Γ; e ∈ γ}|.

Then

κ(Γ) = max
e

1

2|E|
∑
γij3e

|γij |didj ≤
1

2|E|
|γ|Qd2B,

λ2 ≤ 1− 2|E|
d2|γ|QB

.

Similar calculations give

λ|X | ≥ −1 +
2

d|σ|b
,

where |σ| := maxi |σi| and b := maxe |{σ ∈ Σ; e ∈ σ}|.
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