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1 Goal of this lecture

In our first lecture, we introduce the notion of total variation mixing time. One popular
alternative in the literature, apart from the total variation distance, is known as the sep-
aration distance. We shall study basic properties of the separation distance, and discuss
a phenomenon known as cutoff phenomenon that appears in studying the rate of conver-
gence of a sequence of Markov chains. Most of the material is taken from Diaconis and
Saloff-Coste (2006); Levin et al. (2009).

2 Separation distance and strong stationary time

Let (Xt) be an irreducible Markov chain with stationary distribution π, where the Markov
chain run in discrete time. Suppose that (Ft) is a filtration, and (Xt) is adapted to (Ft).
A stationary time τ for (Xt) is a (Ft)-stopping time, possibly depending on the starting
position x, such that the distribution of Xτ is π:

Px(Xτ = y) = π(y), for all y.

Example 1 Let ξ be a X -valued random variable with distribution π, and define

τ := min{t ≥ 0; Xt = ξ}.

Let Ft = σ(ξ, (Xs)0≤s≤t). The time τ is a (Ft)-stopping time, and because Xτ = ξ, τ is a
stationary time.

Suppose that the chain starts at x0. Then τ = 0 implies Xτ = x0; therefore, τ and Xτ

are not independent.

A strong stationary time for (Xt) and starting position x is an (Ft)-stopping time
τ , such that for all times t and all y,

Px(τ = t,Xτ = y) = Px(τ = t)π(y).

In words, Xτ has distribution π and is independent of τ .

Remark 1 If τ is a strong stationary time starting from x, then

Px(τ ≤ t,Xt = y) =
∑
s≤t

∑
z

Px(τ = s,Xs = z,Xt = y)

=
∑
s≤t

∑
z

P t−s(z, y)Px(τ = s)π(z)

= Px(τ ≤ t)π(y).
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We can now introduce the separation distance. The separation distance is defined to
be, for x ∈ X ,

sep(µ, ν) := max
y∈X

[
1− µ(y)

ν(y)

]
,

sx(t) := sep(P t(x, ·), π) = max
y∈X

[
1− P t(x, y)

π(y)

]
,

s(t) := max
x∈X

sx(t).

Note that separation distance is not symmetric and is not a distance between probability
measures.

Lemma 1 (Relationship between strong stationary time and separation distance)
If τ is a strong stationary time for starting state x, then

sx(t) ≤ Px(τ > t).

Proof: Fix x ∈ X . For every y ∈ X ,

1− P t(x, y)

π(y)
= 1− Px (Xt = y)

π(y)

≤ 1− Px (Xt = y, τ ≤ t)
π(y)

= 1− π(y)Px(τ ≤ t)
π(y)

= Px(τ > t),

where the second equality follows from Remark 1. 2

Lemma 2 (Relationship between total variation distance and separation distance)
The separation distance sx(t) satisfies∥∥P t(x, ·)− π∥∥

TV
≤ sx(t),

and therefore d(t) ≤ s(t).

Proof: By Proposition 1 item 2 in lecture 1, we have

∥∥P t(x, ·)− π∥∥
TV

=
∑

P t(x,y)<π(y)

[
π(y)− P t(x, y)

]
=
∑
y∈X

π(y)

[
1− P t(x, y)

π(y)

]

≤ max
y∈X

[
1− P t(x, y)

π(y)

]
= sx(t).

2

Combining Lemma 1 and Lemma 2, we have
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Corollary 3 ∥∥P t(x, ·)− π∥∥
TV
≤ Px(τ > t).

Given starting state x, a state y is a halting state for a stopping time τ if Xt = y
implies τ ≤ t.

Proposition 4 (Fastest strong stationary time) If there exists a halting state for start-
ing state x associated with a strong stationary time τ , then τ is the fastest strong stationary
time, i.e.

sx(t) = Px(τ > t).

In words, any other strong stationary time stochastically dominates τ under Px.

Proof: We repeat the proof in Lemma 1, except that we have equality throughout the
proof.

1− P t(x, y)

π(y)
= 1− Px (Xt = y)

π(y)

= 1− Px (Xt = y, τ ≤ t)
π(y)

= 1− π(y)Px(τ ≤ t)
π(y)

= Px(τ > t),

2

3 Fastest strong stationary time of the birth-death process

In the previous section, we have seen that the the total variation distance and separation
distance are closely related to the fastest strong stationary time. It is therefore useful to
obtain the distribution (and hence the tail probability) of the fastest strong stationary time
in order to bound the mixing time. For a class of Markov chains known as birth-death
processes, we shall see that the fastest strong stationary time is tractable and distributed
as a convolution of exponential distributions.

A Markov chain on X = {0, 1, . . . ,m} is said to be a birth-death chain if P (x, y) = 0
unless |x − y| ≤ 1. It can be checked easily that birth-death chains are reversible. In
the following, it is perhaps more convenient for us to work in cotinuous-time, and all our
previous results can be generalized to continuous-time in a similar fashion. Let G := P − I
be the generator, and P t := eGt be the continuized Markov chain for t ≥ 0. For ergodic
P , the eigenvalues of −G are arranged in ascending order as λ0(−G) = 0 < λ1(−G) ≤
λ2(−G) ≤ . . . ≤ λm(−G) ≤ 2. We state without proof that the fastest strong stationary
time of birth-death process starting at 0 is a convolution of exponential distributions:

Theorem 5 (Fastest strong stationary time of birth-death process starting at 0)
Let G be the infinitesimal generator of a continuous-time ergodic birth-death process on
X = {0, 1, . . . ,m}. Then

s0(t) = P0(τ > t),
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where τ =
∑m

i=1 Si, and each Si is independent exponential random variable with parameter
λi(−G). In particular,

E0(τ) =
m∑
i=1

1

λi(−G)
, Var0(τ) =

m∑
i=1

1

λi(−G)2
.

4 The separation cutoff phenomenon

Suppose that we have a sequence of Markov chains, indexed by n, on state space Xn,
transition semigroup (P tn)t≥0 and stationary distribution πn. These Markov chains may
exhibit abrupt convergence to stationarity, known as the cutoff phenomenon.

Definition 1 (Separation cutoff) A family of Markov chains (Xn, πn, (µtn)t≥0)n=1,2,...,
where µtn = P tn(xn, ·), exhibit separation cutoff if there exists a sequence (tn) of positive
reals such that for any ε ∈ (0, 1),

lim
n→∞

sep(µ(1+ε)tnn , πn) = 0,

lim
n→∞

sep(µ(1−ε)tnn , πn) = 1.

Remark 2 Clearly this definition can be generalized to other notions of cutoff, where we
replace the separation distance by appropriate distance such as total variation or L2 distance.

We now study the separation cutoff phenomenon for birth-death processes. We have
a family of continuous-time birth-death processes with generators Gn = Pn − In on Xn =
{0, 1, . . . ,mn}. Let τn be the fastest strong stationary time of the n-th chain starting at 0,
and define tn and σ2n to be the mean and variance of τn under P0:

tn := E0(τn) =

mn∑
i=1

1

λi(−Gn)
, σ2n := Var0(τn) =

mn∑
i=1

1

λi(−Gn)2
.

Theorem 6 Suppose that we have a family of continuous-time birth-death processes with
generators Gn = Pn − In on Xn = {0, 1, . . . ,mn}. Let τn be the fastest strong stationary
time of the n-th chain starting at 0, and define tn and σ2n to be the mean and variance of τn
under P0. Define λ1,n := λ1(−Gn) be the spectral gap and Nn := λ1,ntn, then if Nn →∞,

lim
n→∞

sep(P (1+ε)tn
n (0, ·), πn) = 0,

lim
n→∞

sep(P (1−ε)tn
n (0, ·), πn) = 1.

Remark 3 Indeed Nn → ∞ is necessary and sufficient condition for separation cutoff of
birth-death processes, see Diaconis and Saloff-Coste (2006).

Before we begin the proof, we first state a version of Chebyshev’s inequality applied on
τn:
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Lemma 7 (Chebyshev’s inequality) Suppose that we are in the setting of Theorem 6.
Then for a > 0,

P0 (τn > tn + aσn) ≤ 1

1 + a2
, P0 (τn < tn − aσn) ≤ 1

1 + a2
.

Proof of Theorem 6: First, we note that

σ2n =

mn∑
i=1

1

λi(−Gn)2
= λ−21,n

mn∑
i=1

λ21,n
λi(−Gn)2

≤ λ−21,n

mn∑
i=1

λ1,n
λi(−Gn)

= λ−11,ntn,

where we use λ1,n/λi(−Gn) ≤ 1 in the inequality. As a result, σn ≤ N
−1/2
n tn. Now, by

Lemma 7 and Theorem 5,

sep(P (1+ε)tn
n (0, ·), πn) = P0(τn > (1 + ε)tn)

= P0(τn > tn + εN1/2
n N−1/2n tn)

≤ P0(τn > tn + εN1/2
n σn)

≤ 1

1 + ε2Nn
→ 0.

Similarly,

P0(τn < (1− ε)tn) = P0(τn < tn − εN1/2
n N−1/2n tn)

≤ P0(τn < tn − εN1/2
n σn)

≤ 1

1 + ε2Nn
→ 0.

This yields sep(P
(1−ε)tn
n (0, ·), πn)→ 1 as n→∞. 2
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