Lecture 5

1 Goal of this lecture

In this lecture, we will look at the notion of mixing time under the relative entropy and ℓ^{2} distance. We shall see how the log-Sobolev constant come into play to give tighter bound on these mixing times than previous techniques that we learnt in earlier lectures. Classical references are Bobkov and Tetali (2006); Diaconis and Saloff-Coste (1996); Montenegro and Tetali (2006).

2 Relative entropy and ℓ^{2} mixing time

In this lecture, we will stick to the continuous-time setting as the results are cleaner. Let P be an ergodic transition matrix on a finite state space \mathcal{X} with stationary distribution π, and as we have seen in our previous lecture we take the generator to be $G=P-I$. The continuized chain is a Markov chain $\left(X_{t}\right)_{t \geq 0}$ with transition semigroup

$$
H^{t}=e^{t G}=\sum_{n=0}^{\infty} \frac{t^{n} G^{n}}{n!} .
$$

Let

$$
h_{t}^{x}(y)=\frac{H^{t}(x, y)}{\pi(y)}
$$

be the density of $H_{t}(x, y)$ with respect to π at time t. Recall in lecture 1 that we are working in the Hilbert space $\ell^{2}(\pi)$ with inner product $\langle f, g\rangle_{\pi}=\sum_{x, y} f(x) g(x) \pi(x)$ and its norm $\|f\|_{\pi}^{2}:=\langle f, f\rangle_{\pi}$. Define the variance and relative entropy to be respectively

$$
\begin{aligned}
\operatorname{Var}_{\pi}\left(h_{t}^{x}\right) & :=\left\|h_{t}^{x}-1\right\|_{\pi}^{2}=\sum_{y \in \mathcal{X}} \pi(y)\left(h_{t}^{x}(y)-1\right)^{2}, \\
\operatorname{Ent}_{\pi}\left(h_{t}^{x}\right) & :=\sum_{y \in \mathcal{X}} H^{t}(x, y) \log \frac{H^{t}(x, y)}{\pi(y)}=\sum_{y \in \mathcal{X}} h_{t}^{x}(y) \log h_{t}^{x}(y) \pi(y) .
\end{aligned}
$$

The ℓ^{2} and relative entropy mixing time are defined as follows, for $\epsilon>0$,

$$
\begin{aligned}
t_{2}(\epsilon) & :=\inf \left\{t \geq 0 ; \max _{x} \operatorname{Var}_{\pi}\left(h_{t}^{x}\right) \leq \epsilon\right\}, \\
t_{E n t}(\epsilon) & :=\inf \left\{t \geq 0 ; \max _{x} \operatorname{Ent}_{\pi}\left(h_{t}^{x}\right) \leq \epsilon\right\} .
\end{aligned}
$$

The Dirichlet form of G is given by

$$
\mathcal{E}(f, g)=\langle f,(-G) g\rangle_{\pi}=\sum_{x, y} f(x)(g(x)-g(y)) P(x, y) \pi(x) .
$$

The spectral gap λ, log-Sobolev constant ρ and modified log-Sobolev constant ρ_{0} are defined to be respectively:

$$
\begin{aligned}
\lambda & :=\inf _{\operatorname{Var}_{\pi}(f) \neq 0} \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)}, \\
\rho & :=\inf _{\operatorname{Ent}_{\pi}\left(f^{2}\right) \neq 0} \frac{\mathcal{E}(f, f)}{\operatorname{Ent}_{\pi}\left(f^{2}\right)}, \\
\rho_{0} & :=\inf _{f \geq 0 ; \operatorname{Ent}_{\pi}(f) \neq 0} \frac{\mathcal{E}(f, \log f)}{\operatorname{Ent}_{\pi}(f)} .
\end{aligned}
$$

3 Mixing time bounds via λ and ρ_{0}

Our main result in this lecture is the following:
Theorem 1 Let $\pi_{\text {min }}:=\min _{x} \pi(x)$. Then for $\epsilon>0$,

$$
\begin{aligned}
t_{2}(\epsilon) & \leq \frac{1}{\lambda}\left(\frac{1}{2} \log \left(\frac{1-\pi_{\min }}{\pi_{\min }}\right)+\log \frac{1}{\epsilon}\right) \\
t_{E n t}(\epsilon) & \leq \frac{1}{\rho_{0}}\left(\log \log \frac{1}{\pi_{m i n}}+\log \frac{1}{\epsilon}\right)
\end{aligned}
$$

We first state two lemmas that will help our proof.

Lemma 2 (Kolmogorov forward equation) For any $x, y \in \mathcal{X}$ and $t \geq 0$,

$$
\frac{d}{d t} h_{t}^{x}(y)=G^{*} h_{t}^{x}(y)
$$

where G^{*} is the adjoint operator of G in $\ell^{2}(\pi)$.

Lemma 3 (Variance flow and entropy flow)

$$
\begin{aligned}
\frac{d}{d t} \operatorname{Var}_{\pi}\left(h_{t}^{x}\right) & =-2 \mathcal{E}\left(h_{t}^{x}, h_{t}^{x}\right) \\
\frac{d}{d t} \operatorname{Ent}_{\pi}\left(h_{t}^{x}\right) & =-\mathcal{E}\left(h_{t}^{x}, \log h_{t}^{x}\right)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\frac{d}{d t} \operatorname{Var}_{\pi}\left(h_{t}^{x}\right) & =\sum_{y \in \mathcal{X}} \pi(y) \frac{d}{d t}\left(h_{t}^{x}(y)-1\right)^{2} \\
& =2 \sum_{y \in \mathcal{X}} \pi(y)\left(h_{t}^{x}(y)-1\right) G^{*} h_{t}^{x}(y) \\
& =2\left\langle G h_{t}^{x}, h_{t}^{x}\right\rangle_{\pi}-\left\langle G \mathbf{1}, h_{t}^{x}\right\rangle_{\pi} \\
& =-2 \mathcal{E}\left(h_{t}^{x}, h_{t}^{x}\right)
\end{aligned}
$$

where we use Lemma 2 in the second equality, and the fourth equality follows from $G \mathbf{1}=0$.

$$
\begin{aligned}
\frac{d}{d t} \operatorname{Ent}_{\pi}\left(h_{t}^{x}\right) & =\sum_{y \in \mathcal{X}} \pi(y) \frac{d}{d t} h_{t}^{x}(y) \log h_{t}^{x}(y) \\
& =\sum_{y \in \mathcal{X}} \pi(y)\left(\log h_{t}^{x}(y)+1\right) G^{*} h_{t}^{x}(y) \\
& =\left\langle G \log h_{t}^{x}, h_{t}^{x}\right\rangle_{\pi}+\left\langle G \mathbf{1}, h_{t}^{x}\right\rangle_{\pi} \\
& =-\mathcal{E}\left(h_{t}^{x}, \log h_{t}^{x}\right),
\end{aligned}
$$

where we use Lemma 2 in the second equality, and the fourth equality follows from $G \mathbf{1}=0$.
We can now state the proof of Theorem 1.
Proof of Theorem 1: \quad By Lemma 3 and the definition of λ and ρ_{0}, we have

$$
\begin{aligned}
& \frac{d}{d t} \operatorname{Var}_{\pi}\left(h_{t}^{x}\right)=-2 \mathcal{E}\left(h_{t}^{x}, h_{t}^{x}\right) \leq-2 \lambda \operatorname{Var}_{\pi}\left(h_{t}^{x}\right), \\
& \frac{d}{d t} \operatorname{Ent}_{\pi}\left(h_{t}^{x}\right)=-\mathcal{E}\left(h_{t}^{x}, \log h_{t}^{x}\right) \leq-\rho_{0} \operatorname{Ent}_{\pi}\left(h_{t}^{x}\right) .
\end{aligned}
$$

Desired results follow by noting that

$$
\operatorname{Var}_{\pi}\left(h_{0}^{x}\right) \leq \frac{1-\pi_{\text {min }}}{\pi_{\text {min }}}, \quad \operatorname{Ent}_{\pi}\left(h_{0}^{x}\right) \leq \log \frac{1}{\pi_{\text {min }}} .
$$

4 Bounds on the log-Sobolev constant ρ

In Lecture 2, we have seen how we apply geometric bounds such as Poincaré's or Cheeger's inequality in bounding the SLEM. In the following, we bound ρ_{0} in terms of ρ and λ :

Theorem 4

$$
2 \rho \leq \rho_{0} \leq 2 \lambda .
$$

We first state a useful lemma:
Lemma 5 If $f \geq 0$, then

$$
2 \mathcal{E}(\sqrt{f}, \sqrt{f}) \leq \mathcal{E}(f, \log f) .
$$

Proof: First, observe that, for $a, b, c>0$,

$$
a(\log a-\log b)=2 a \log \frac{\sqrt{a}}{\sqrt{b}} \geq 2 a\left(1-\frac{\sqrt{b}}{\sqrt{a}}\right)=2 \sqrt{a}(\sqrt{a}-\sqrt{b})
$$

by the relation $\log c \geq 1-c^{-1}$. Then

$$
\begin{aligned}
\mathcal{E}(f, \log f) & =\sum_{x, y} f(x)(\log f(x)-\log f(y)) \mathrm{P}(x, y) \pi(x) \\
& \geq 2 \sum_{x, y} f^{1 / 2}(x)\left(f^{1 / 2}(x)-f^{1 / 2}(y)\right) \mathrm{P}(x, y) \pi(x) \\
& =2 \mathcal{E}(\sqrt{f}, \sqrt{f}) .
\end{aligned}
$$

Proof of Theorem 4: The first inequality is immediate from Lemma 5. For the second inequality, we take $g \in \ell^{2}(\pi)$ to be an arbitrary function with $\mathbb{E}_{\pi}(g)=\langle 1, g\rangle_{\pi}=0$. Let $f=1+\epsilon g$, where $\epsilon \ll 1$ such that $f \geq 0$. Using Taylor expansion, we have $\log (1+\epsilon g)=$ $\epsilon g-\frac{1}{2}(\epsilon)^{2} g^{2}+o\left(\epsilon^{2}\right)$, and so

$$
\begin{aligned}
\operatorname{Ent}_{\pi}(f) & =\sum_{y \in \mathcal{X}} \pi(y) f(y) \log f(y)=\frac{1}{2} \epsilon^{2} \pi\left(g^{2}\right)+o\left(\epsilon^{2}\right) \\
\mathcal{E}(f, \log f) & =-\epsilon \mathbb{E}_{\pi}((G g) \log (1+\epsilon g))=\epsilon^{2} \mathcal{E}(g, g)+o\left(\epsilon^{2}\right)
\end{aligned}
$$

As a result, we have

$$
\mathcal{E}(f, \log f)=\epsilon^{2} \mathcal{E}(g, g)+o\left(\epsilon^{2}\right) \geq \rho_{0} \operatorname{Ent}_{\pi}(f)=\frac{\rho_{0}}{2} \epsilon^{2} \pi\left(g^{2}\right)+o\left(\epsilon^{2}\right)
$$

Dividing by ϵ^{2} and take $\epsilon \rightarrow 0$ yields

$$
\frac{\mathcal{E}(g, g)}{\pi\left(g^{2}\right)} \geq \frac{\rho_{0}}{2}
$$

Desired result follows since this holds for arbitrary g with $\mathbb{E}_{\pi} g=0$.

References

S. G. Bobkov and P. Tetali. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2):289-336, 2006.
P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab., 6(3):695-750, 1996.
R. Montenegro and P. Tetali. Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci., 1(3):x+121, 2006.

