Markov chain mixing time The log-Sobolev constant

Lecture 5
Lecturer: Michael Choi Scribe: Michael Choi

1 Goal of this lecture

In this lecture, we will look at the notion of mixing time under the relative entropy and ¢?
distance. We shall see how the log-Sobolev constant come into play to give tighter bound
on these mixing times than previous techniques that we learnt in earlier lectures. Classical
references are Bobkov and Tetali (2006); Diaconis and Saloff-Coste (1996); Montenegro and
Tetali (2006).

2 Relative entropy and (?> mixing time

In this lecture, we will stick to the continuous-time setting as the results are cleaner. Let
P be an ergodic transition matrix on a finite state space X with stationary distribution ,
and as we have seen in our previous lecture we take the generator to be G = P — I. The
continuized chain is a Markov chain (X¢);>0 with transition semigroup

n!
n=0

Let
H'(z,y)

™(y)

be the density of Hy(x,y) with respect to 7 at time ¢. Recall in lecture 1 that we are
working in the Hilbert space ¢2(m) with inner product (f, g), = > uy f(@)g(x)m(2) and its
norm ||f||2 := (f, f)=. Define the variance and relative entropy to be respectively

Var, (h?) := |h% — 1|2 = Z ©(y) (hf (y) — 1)%,

yGX

Ent,(h{) : ZHt T,y log Zh”c ) log hi (y)m(y).
yeX

hi (y) =

The ¢? and relative entropy mixing time are defined as follows, for € > 0,
ta(€) := inf{t > 0; max Var,(hy) < €},
xr
tpnt(€) := inf{t > 0; maxEnt,(h{) < €}.
xr

The Dirichlet form of G is given by
E(f9) =/, Zf —9(W)P(z,y)m(x).
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The spectral gap A, log-Sobolev constant p and modified log-Sobolev constant
po are defined to be respectively:

. E(f )
A= Varw<f>¢o Varg(f)’
e D
 Enta(f2)£0 Enty (f2)
o E(f,log f)
po =

720, Bnie(f)#0 Ente(f)

3 Mixing time bounds via A and py
Our main result in this lecture is the following:

Theorem 1 Let 7y, = min, w(z). Then for e >0,

1 1 — Toin 1
t — 1 _ log —
2(€) < A( 0g< p— >+og€>7
1 1 1
ten(e) < — <log log + log ) .
Po €

We first state two lemmas that will help our proof.

min

Lemma 2 (Kolmogorov forward equation) For any x,y € X andt >0,

d “x
dtht( ) G™hi (?/),

where G* is the adjoint operator of G in *(r).

Lemma 3 (Variance flow and entropy flow)
d x x x

d
SEnt () = —E(hF, log ).

Proof:

d T\ d x
amen—§j<>ﬁm<> ?

yeX

=2) w(y — 1) G*h¥(y)
yeX

= 2(GhE, h¥)r — (G1,h¥)x

= —2E(hi, hi),
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where we use Lemma 2 in the second equality, and the fourth equality follows from G1 = 0.

d v d, . @
aEntw(ht) = Z m(y )dth (y) log I (y)

yeX

= Z )(log ki (y) + 1)G*hi (y)

yeX
= (Glogh{, hi)z + (G1,h{);
= _E(htzulog hf))

where we use Lemma 2 in the second equality, and the fourth equality follows from G1 = 0.

We can now state the proof of Theorem 1. -
Proof of Theorem 1: By Lemma 3 and the definition of A and pg, we have
5Var7r(ht) —2&(h7,h7) < —2X\Var, (hY),
%Entw(hf) = —&(h{,loghy) < —poEnt,(hy).
Desired results follow by noting that
Var, (h) < 1;::" But(1§) < log -
g

4 Bounds on the log-Sobolev constant p

In Lecture 2, we have seen how we apply geometric bounds such as Poincaré’s or Cheeger’s
inequality in bounding the SLEM. In the following, we bound pg in terms of p and A:

Theorem 4
2p < po < 2.

We first state a useful lemma:

Lemma 5 If f > 0, then

26(\Vf A F) < E(f,log f).

Proof: First, observe that, for a,b,c > 0,

_ 9al0g Y2 VY atva -
a(loga —logb) = 2alog\/6>2 (1 \/6>_2f(f VD)

by the relation logc > 1 — ¢~ '. Then
E(flog f) = Z f(x)(log f(x) —log f(y))P(z, y)7 ()

>22 712(x) (fw v) = ")) P, y)r(x)
f VI
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O
Proof of Theorem 4: The first inequality is immediate from Lemma 5. For the second
inequality, we take g € £2(7) to be an arbitrary function with E,(g) = (1,9)» = 0. Let
f =1+ eg, where € < 1 such that f > 0. Using Taylor expansion, we have log(1l + e¢g) =
€g — %(6)292 +o0 (62), and so

Bt (/) = 3 w(u)f(0) log f(4) = 27 (67) +0()

yeX
E(flog f) = —eEr((Gg)log(1 + eg)) = €?E(g,9) + 0 (¢°) .

As a result, we have

E(flog f) = €*E(g.g9) + o (62) > poEnt,(f) = PO 2 (92) +o (62) .

2
Dividing by €% and take € — 0 yields
m(g?) T 2
Desired result follows since this holds for arbitrary g with E,g = 0. O
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