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1 Goal of this lecture

In this lecture, we will look at the notion of mixing time under the relative entropy and `2

distance. We shall see how the log-Sobolev constant come into play to give tighter bound
on these mixing times than previous techniques that we learnt in earlier lectures. Classical
references are Bobkov and Tetali (2006); Diaconis and Saloff-Coste (1996); Montenegro and
Tetali (2006).

2 Relative entropy and `2 mixing time

In this lecture, we will stick to the continuous-time setting as the results are cleaner. Let
P be an ergodic transition matrix on a finite state space X with stationary distribution π,
and as we have seen in our previous lecture we take the generator to be G = P − I. The
continuized chain is a Markov chain (Xt)t≥0 with transition semigroup

Ht = etG =
∞∑
n=0

tnGn

n!
.

Let

hxt (y) =
Ht(x, y)

π(y)

be the density of Ht(x, y) with respect to π at time t. Recall in lecture 1 that we are
working in the Hilbert space `2(π) with inner product 〈f, g〉π =

∑
x,y f(x)g(x)π(x) and its

norm ||f ||2π := 〈f, f〉π. Define the variance and relative entropy to be respectively

Varπ(hxt ) := ‖hxt − 1‖2π =
∑
y∈X

π(y) (hxt (y)− 1)2 ,

Entπ(hxt ) :=
∑
y∈X

Ht(x, y) log
Ht(x, y)

π(y)
=
∑
y∈X

hxt (y) log hxt (y)π(y).

The `2 and relative entropy mixing time are defined as follows, for ε > 0,

t2(ε) := inf{t ≥ 0; max
x

Varπ(hxt ) ≤ ε},

tEnt(ε) := inf{t ≥ 0; max
x

Entπ(hxt ) ≤ ε}.

The Dirichlet form of G is given by

E(f, g) = 〈f, (−G)g〉π =
∑
x,y

f(x)(g(x)− g(y))P (x, y)π(x).
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The spectral gap λ, log-Sobolev constant ρ and modified log-Sobolev constant
ρ0 are defined to be respectively:

λ := inf
Varπ(f) 6=0

E(f, f)

Varπ(f)
,

ρ := inf
Entπ(f2)6=0

E(f, f)

Entπ(f2)
,

ρ0 := inf
f≥0; Entπ(f)6=0

E(f, log f)

Entπ(f)
.

3 Mixing time bounds via λ and ρ0

Our main result in this lecture is the following:

Theorem 1 Let πmin := minx π(x). Then for ε > 0,

t2(ε) ≤
1

λ

(
1

2
log

(
1− πmin
πmin

)
+ log

1

ε

)
,

tEnt(ε) ≤
1

ρ0

(
log log

1

πmin
+ log

1

ε

)
.

We first state two lemmas that will help our proof.

Lemma 2 (Kolmogorov forward equation) For any x, y ∈ X and t ≥ 0,

d

dt
hxt (y) = G∗hxt (y),

where G∗ is the adjoint operator of G in `2(π).

Lemma 3 (Variance flow and entropy flow)

d

dt
Varπ(hxt ) = −2E(hxt , h

x
t ),

d

dt
Entπ(hxt ) = −E(hxt , log hxt ).

Proof:

d

dt
Varπ(hxt ) =

∑
y∈X

π(y)
d

dt
(hxt (y)− 1)2

= 2
∑
y∈X

π(y) (hxt (y)− 1)G∗hxt (y)

= 2〈Ghxt , hxt 〉π − 〈G1, hxt 〉π
= −2E(hxt , h

x
t ),
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where we use Lemma 2 in the second equality, and the fourth equality follows from G1 = 0.

d

dt
Entπ(hxt ) =

∑
y∈X

π(y)
d

dt
hxt (y) log hxt (y)

=
∑
y∈X

π(y)(log hxt (y) + 1)G∗hxt (y)

= 〈G log hxt , h
x
t 〉π + 〈G1, hxt 〉π

= −E(hxt , log hxt ),

where we use Lemma 2 in the second equality, and the fourth equality follows from G1 = 0.
2

We can now state the proof of Theorem 1.
Proof of Theorem 1: By Lemma 3 and the definition of λ and ρ0, we have

d

dt
Varπ(hxt ) = −2E(hxt , h

x
t ) ≤ −2λVarπ(hxt ),

d

dt
Entπ(hxt ) = −E(hxt , log hxt ) ≤ −ρ0Entπ(hxt ).

Desired results follow by noting that

Varπ(hx0) ≤ 1− πmin
πmin

, Entπ(hx0) ≤ log
1

πmin
.

2

4 Bounds on the log-Sobolev constant ρ

In Lecture 2, we have seen how we apply geometric bounds such as Poincaré’s or Cheeger’s
inequality in bounding the SLEM. In the following, we bound ρ0 in terms of ρ and λ:

Theorem 4
2ρ ≤ ρ0 ≤ 2λ.

We first state a useful lemma:

Lemma 5 If f ≥ 0, then
2E(
√
f,
√
f) ≤ E(f, log f).

Proof: First, observe that, for a, b, c > 0,

a(log a− log b) = 2a log

√
a√
b
≥ 2a

(
1−
√
b√
a

)
= 2
√
a(
√
a−
√
b)

by the relation log c ≥ 1− c−1. Then

E(f, log f) =
∑
x,y

f(x)(log f(x)− log f(y))P(x, y)π(x)

≥ 2
∑
x,y

f1/2(x)
(
f1/2(x)− f1/2(y)

)
P(x, y)π(x)

= 2E(
√
f,
√
f).

5-3



2

Proof of Theorem 4: The first inequality is immediate from Lemma 5. For the second
inequality, we take g ∈ `2(π) to be an arbitrary function with Eπ(g) = 〈1, g〉π = 0. Let
f = 1 + εg, where ε � 1 such that f ≥ 0. Using Taylor expansion, we have log(1 + εg) =
εg − 1

2(ε)2g2 + o
(
ε2
)
, and so

Entπ(f) =
∑
y∈X

π(y)f(y) log f(y) =
1

2
ε2π

(
g2
)

+ o
(
ε2
)
,

E(f, log f) = −εEπ((Gg) log(1 + εg)) = ε2E(g, g) + o
(
ε2
)
.

As a result, we have

E(f, log f) = ε2E(g, g) + o
(
ε2
)
≥ ρ0Entπ(f) =

ρ0
2
ε2π

(
g2
)

+ o
(
ε2
)
.

Dividing by ε2 and take ε→ 0 yields

E(g, g)

π(g2)
≥ ρ0

2
.

Desired result follows since this holds for arbitrary g with Eπg = 0. 2

References

S. G. Bobkov and P. Tetali. Modified logarithmic Sobolev inequalities in discrete settings.
J. Theoret. Probab., 19(2):289–336, 2006.

P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains.
Ann. Appl. Probab., 6(3):695–750, 1996.

R. Montenegro and P. Tetali. Mathematical aspects of mixing times in Markov chains.
Found. Trends Theor. Comput. Sci., 1(3):x+121, 2006.

5-4


