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Introduction

• Let π be a discrete or continuous distribution.
Goal: Sample from π or estimate π(f), where

π(f) =
∑
x

f(x)π(x), or π(f) =

∫
f(x)π(dx).

• Difficulty: At times it is impossible to apply classical
Monte Carlo methods, since π is often of the form

π(x) =
e−βH(x)

Z
,

where Z is a normalization constant that cannot be
computed.
• Idea of Markov chain Monte Carlo (MCMC):

Construct a Markov chain that converges to π, which only
depends on the ratio

π(y)

π(x)
.

Thus there is no need to know Z.
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Motivation from Bayesian statistics

• Suppose that we have a statistical model on the parameter
θ, and we observe data x = (xi)

n
i=1 generated from this

model.
Likelihood function of x given θ: L(θ|x).
Prior distribution of θ: f(θ).

• By Bayes theorem, the posterior distribution of θ given
x is

π(θ|x) =
L(θ|x)f(θ)∫
L(θ|x)f(θ) dθ

,

where the integral is often impossible to calculate.

• To conduct Bayesian inference, we need to sample from
π(θ|x) or estimate π(f) (e.g. the posterior mean). MCMC
is thus very useful in the Bayesian statistics community.
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The Metropolis-Hastings algorithm

• Two ingredients:
(i). Target distribution: π
(ii). Proposal chain with transition matrix
Q = (Q(x, y))x,y.
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The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain Q, target distribution π
1 Given Xn, generate Yn ∼ Q(Xn, ·)
2 Take

Xn+1 =

{
Yn, with probability α(Xn, Yn),

Xn, with probability 1− α(Xn, Yn),

where

α(x, y) := min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
is known as the acceptance probability.
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The Metropolis-Hastings algorithm

Definition

The Metropolis-Hastings algorithm, with proposal chain Q and
target distribution π, is a Markov chain X = (Xn)n≥1 with
transition matrix

P (x, y) =

{
α(x, y)Q(x, y), for x 6= y,

1−
∑

y; y 6=x P (x, y), for x = y.
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The Metropolis-Hastings (MH) algorithm

Theorem

Given target distribution π and proposal chain Q, the
Metropolis-Hastings chain is

• reversible, that is, for all x, y,

π(x)P (x, y) = π(y)P (y, x).

• (Ergodic theorem of MH) If P is irreducible, then

lim
n→∞

1

n

n∑
i=1

f(Xi) = π(f).
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The Metropolis-Hastings algorithm

• Different choices of Q give rise to different MH algorithms

• Symmetric MH: We take a symmetric proposal chain
with Q(x, y) = Q(y, x), and so the acceptance probability is

α(x, y) = min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
= min

{
π(y)

π(x)
, 1

}
.

• Random walk MH: We take a random walk proposal
chain with Q(x, y) = Q(y − x). E.g., Q(x, ·) is the
probability density function of N(x, σ2).

• Independence sampler: Here we take Q(x, y) = q(y),
where q(y) is a probability distribution. In words, Q(x, y)
does not depend on x.
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Example 1: logistic regression

• We observe (xi, yi)
n
i=1 according to the model

Yi ∼ Bernoulli(p(xi)), p(x) =
eα+βx

1 + eα+βx
.

• The likelihood function is

L(α, β|x,y) ∝
n∏
i=1

(
eα+βxi

1 + eα+βxi

)yi ( 1

1 + eα+βxi

)1−yi
,

and prior distribution

πα(α|b̂)πβ(β) =
1

b̂
eαe−e

α/b̂,

i.e. exponential prior on logα and a flat prior on β. b̂ is
chosen such that E(α) = α̂, where α̂ is the MLE of α.
• Goal: sample from the posterior of (α, β) using the MH

algorithm
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Example 1: logistic regression

• Choosing a good Q to accelerate convergence: Let α̂

and β̂ be the MLE of α and β respectively, and σ̂2
β̂

be the

variance of β̂.

• We take an independent MH with proposal chain

f(α, β) = πα(α|b̂)φ(β),

where φ(β) is the pdf of normal distribution with mean β̂

and variance σ̂2
β̂
.



Michael Choi

Example 1: logistic regression

• Choosing a good Q to accelerate convergence: Let α̂

and β̂ be the MLE of α and β respectively, and σ̂2
β̂

be the

variance of β̂.

• We take an independent MH with proposal chain

f(α, β) = πα(α|b̂)φ(β),

where φ(β) is the pdf of normal distribution with mean β̂

and variance σ̂2
β̂
.



Michael Choi

Example 1: logistic regression

Algorithm 2: Independent MH on logistic regression

1 Given (αn, βn), generate (α
′
, β
′
) ∼ f(α, β), that is, generate

logα
′

following exponential distribution with parameter b̂,

and β
′ ∼ N(β̂, σ̂2

β̂
).

2 Accept (α
′
, β
′
) with probability

min

{
L(α

′
, β
′ |x,y)φ(βn)

L(αn, βn|x,y)φ(β′)
, 1

}
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Example 2: graph colouring

• Let G = (V,E) be an undirected graph without self-loop on
the vertex set V and edge set E. We want to colour each
vertex with one of the q colours such that a vertex’s colour
differs from that of all its neighbours.

Photo courtesy of Olivier Leveque (EPFL)
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Example 2: graph colouring

• Let S be the set of possible colour configurations on G, and
x = (xv, v ∈ V ) ∈ S is a particular colour configuration. A
proper q-colouring of G is any configuration x such that
for all v, w ∈ V , if (v, w) ∈ E, then xv 6= xw.

• Goal: Sample uniformly among the proper q-colourings of
G. In other words, we would like to sample from

π(x) =
1{x is a proper q-colouring}

Z
, x ∈ S,

where Z is the number of proper q-colourings of G.

• Computing Z is non-trivial. Using Metropolis-Hastings, we
can still sample π without computing Z.
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Example 2: graph colouring

Algorithm 3: MH on graph colouring

1 Given a proper q-colouring x
2 Select a vertex v ∈ V uniformly at random
3 Select a colour c ∈ {1, 2, . . . , q} uniformly at random
4 If c is an allowed colour at v, then recolour v, i.e. set xv = c;

do nothing otherwise
5 Repeat step 2 - 4
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Example 3: Ising model

• Let G = (V,E) be an undirected graph without self-loop on
the vertex set V = {1, 2, . . . , N} and edge set E. Variables
σv ∈ {−1, 1} are attached to the vertices v ∈ V . These
variables are called spins. The state space is made up of
spin assignments σ = (σ1, σ2, . . . , σN ) ∈ {−1, 1}N .

• We would like to sample from the Gibbs distribution:

π(σ) =
1

Z
exp

 ∑
(v,w)∈E

βJvwσvσw

 ,

where β > 0 is the inverse temperature, Jvw ∈ R is the
interaction strength and Z is the normalization constant

Z =
∑

σ∈{−1,1}N
exp

 ∑
(v,w)∈E

βJvwσvσw

 .
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Example 3: Ising model

Algorithm 4: MH on Ising model

1 Given an initial spin assignment σ
2 Select a vertex v ∈ V uniformly at random

3 Consider the spin assignment σ(v) where the initial spin σv

is flipped, i.e. σ
(v)
v = −σv.

4 Accept σ(v) with probability

min

{
π(σ(v))

π(σ)
, 1

}
= min

{
e−β2σv

∑
w Jvwσw , 1

}
; do nothing otherwise.

5 Repeat step 2 - 4
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MH as L1 minimizer

Theorem (Billera and Diaconis ’01, Choi and Huang ’19)

Given a target distribution π and proposal chain Q on a finite
state space, let P be the transition matrix of MH. Then

dπ(Q,P ) = inf
K∈R(π)

dπ(Q,K),

where R(π) is the set of reversible transition matrix with respect
to π, and

dπ(Q,K) =
∑
x

∑
y 6=x

π(x)|Q(x, y)−K(x, y)|.

In words, P minimizes the distance dπ between Q and R(π).
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The scaling limit of MH is the Langevin diffusion

• Suppose that U : Rd → R, and U is continuously
differentiable with Lipschitz continuous gradient.

• Target distribution: Gibbs distribution with density

π(x) =
e−U(x)/T∫
e−U(x)/T dx

Proposal chain: Gaussian proposal with Qε(x,y) being the
pdf of N(x, εI).
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The scaling limit of MH is the Langevin diffusion

Theorem (Gelfand and Mitter ’91)

Given target distribution π and proposal chain Qε, let (Xε
n)n≥0

be the MH chain. Then

Xε
bt/εc ⇒ Xt,

where (Xt)t≥0 is a rescaled version of the Langevin diffusion
described by the SDE

dXt = −∇U(Xt)/2Tdt+ dWt,

where (Wt)t≥0 is the standard d-dimensional Brownian motion.
In words, the scaled MH chain converges weakly in the
Skorokhod topology to a rescaled Langevin diffusion.
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Simulated annealing

• Goal: Find the global minimizers of a target function U .

• Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to π∞, which is supported on the set of
global minima of U .

• Target distribution: Gibbs distribution πT (t) with
temperature T (t) that depends on time t

πT (t)(x) =
e−U(x)/T (t)

ZT (t)
,

ZT (t) =
∑
x

e−U(x)/T (t).

Proposal chain Q: symmetric



Michael Choi

Simulated annealing

• Goal: Find the global minimizers of a target function U .

• Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to π∞, which is supported on the set of
global minima of U .

• Target distribution: Gibbs distribution πT (t) with
temperature T (t) that depends on time t

πT (t)(x) =
e−U(x)/T (t)

ZT (t)
,

ZT (t) =
∑
x

e−U(x)/T (t).

Proposal chain Q: symmetric



Michael Choi

Simulated annealing

• Goal: Find the global minimizers of a target function U .

• Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to π∞, which is supported on the set of
global minima of U .

• Target distribution: Gibbs distribution πT (t) with
temperature T (t) that depends on time t

πT (t)(x) =
e−U(x)/T (t)

ZT (t)
,

ZT (t) =
∑
x

e−U(x)/T (t).

Proposal chain Q: symmetric



Michael Choi

Simulated annealing

• The temperature cools down T (t)→ 0 as t→∞, and we
expect the Markov chain get “frozen” at the set of global
minima Umin:

π∞(x) := lim
t→∞

πT (t)(x) =


1

|Umin|
, for x ∈ Umin,

0, for x /∈ Umin.
Umin := {x; U(x) ≤ U(y) for all y}.
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Simulated annealing

Algorithm 5: Simulated annealing

Input: Symmetric proposal chain Q, target distribution
πT (t), temperature schedule T (t)

1 Given Xt, generate Yt ∼ Q(Xt, ·)
2 Take

Xt+1 =

{
Yt, with probability αt(Xt, Yt),

Xt, with probability 1− αt(Xt, Yt),

where

αt(x, y) := min

{
πT (t)(y)Q(y, x)

πT (t)(x)Q(x, y)
, 1

}
= min

{
e
U(x)−U(y)

T (t) , 1

}
is the acceptance probability.
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Optimal cooling schedule

• The temperature schedule T (t) cannot be too slow: it may
take too long for the Markov chain to converge

• T (t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.

Theorem (Hajek ’88, Holley and Stroock ’88)

The Markov chain generated by simulated annealing converges
to π∞ if and only if for any ε > 0,

T (t) =
c+ ε

ln(t+ 1)
,

where c is known as the optimal hill-climbing constant that
depends on the target function U and proposal chain Q.
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Other MCMC algorithms

• Glauber dynamics/heat bath algorithm/Gibbs sampler

• Perfect simulation/Coupling from the past

• Hamilitonian Monte Carlo

• Metropolis adjusted Langevin algorithm (MALA)
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Thank you! Question(s)?
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