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Introduction

• Our focus today is stochastic optimization, in particular
simulated annealing algorithms based on Langevin
diffusion and its variants. We will highlight connections
with sampling throughout the talk.

• We will talk about a method to accelerate kinetic
simulated annealing.

• Reference: “On the convergence of an improved and
adaptive kinetic simulated annealing” arXiv:2009.00195v2
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Simulated annealing (SA)

• Let U : Rd → R be the target function to minimize.

• Overdamped Langevin diffusion (Zt)t≥0:

Definition (Overdamped Langevin)

The SDE of overdamped Langevin is given by

dZt = −∇U(Zt) dt+
√

2εtdBt, (1)

where (Bt)t≥0 is the standard d-dimensional Brownian motion
and (εt)t≥0 is the temperature or cooling schedule.

• The instantaneous stationary distribution at time t is the
Gibbs distribution

µ0
εt(x) ∝ e−

1
εt
U(x)

.

• The overdamped Langevin diffusion is widely used in
sampling, e.g. ULA, MALA...
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Simulated annealing (SA)

• Convergence of SA depends on a constant E∗ that is called
the critical height or the hill-climbing constant.

•

E∗ := sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))} − U(x)− U(y) + inf U

}
,

where for two points x, y ∈ Rd, we write Γx,y to be the set
of C1 parametric curves that start at x and end at y.

• Intuitively speaking, E∗ is the largest hill one need to climb
starting from a local minimum to a fixed global minimum.
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Convergence of SA

Theorem (Convergence of SA (Chiang et al. ’87, Holley et
al. ’89, Jacquot ’92, Miclo ’92 ...))

Under the logarithmic cooling schedule of the form

εt =
E

ln t
, large enough t, (2)

where E > E∗, for any δ > 0 we have

lim
t→∞

P (U(Zt) > inf U + δ) = 0.
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Kinetic simulated annealing (KSA)

• Overdamped Langevin diffusion is used in SA, which is
reversible w.r.t. the Gibbs distribution at each time t.

• Underdamped/kinetic Langevin diffusion is used in KSA
that incorporates the velocity or momentum variable.

• As underdamped Langevin is in general non-reversible, this
heuristic can hopefully improve the convergence.

• Non-reversible dynamics have been proposed to accelerate
convergence in the context of sampling or optimization, e.g.
Bierkens ’16, Chen and Hwang ’13, Diaconis et al. ’00,
Duncan et al. ’16 ’17, Hwang et al. ’93 ’05 ...
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Kinetic simulated annealing (KSA)

• Underdamped Langevin diffusion (Xt,Yt)t≥0:

Definition (Underdamped Langevin)

The SDE of underdamped Langevin is given by

dXt = Yt dt,

dYt = − 1

εt
Yt dt−∇U(Xt) dt+

√
2 dBt,

where (Xt)t≥0 stands for the position and (Yt)t≥0 is the velocity
or momentum variable.

• The instantaneous stationary distribution at time t is the
product distribution of the Gibbs distribution µ0

εt and the
Gaussian distribution with mean 0 and variance εt:

π0
εt(x, y) ∝ e−

1
εt
U(x)

e
− ‖y‖

2

2εt .
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Convergence of KSA

• Non-reversibility of underdamped Langevin imposes
technical difficulties in analyzing the convergence of KSA.
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• Non-reversibility of underdamped Langevin imposes
technical difficulties in analyzing the convergence of KSA.

Theorem (Convergence of KSA (Monmarché ’18))

Under the logarithmic cooling schedule of the form

εt =
E

ln t
, large enough t,

where E > E∗, for any δ > 0 we have

lim
t→∞

P (U(Xt) > inf U + δ) = 0.
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Improved simulated annealing (ISA)

• Many techniques have been developed in the literature to
accelerate the convergence of Langevin diffusion, e.g.
preconditioning (Li et al. ’16), use of Lévy noise (Simsekli
’17), generalized Langevin dynamics (Chak et al. ’20),
anti-symmetric perturbation of drift (Hwang et al. ’93,
Duncan et al. ’17)...

• In our talk today we will focus on a variant of overdamped
Langevin diffusion with state-dependent diffusion
coefficient, introduced by Fang et al. (SPA ’97)
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Improved simulated annealing (ISA)

• Improved overdamped Langevin diffusion (Zt)t≥0:

Definition (Improved overdamped Langevin)

The SDE of improved overdamped Langevin is given by

dZt = −∇U(Zt) dt+
√

2 (f((U(Zt)− c)+) + εt) dBt. (3)

• Two parameters are introduced:
• c: It is chosen such that c > inf U
• f : R→ R+ twice-differentiable, non-negative, bounded and

non-decreasing with f(0) = f ′(0) = f ′′(0) = 0.
• The instantaneous stationary distribution at time t is

µfεt(x) ∝ 1

f((U(x)− c)+) + εt
exp

(
−
∫ U(x)

inf U

1

f((u− c)+) + εt
du

)
.

• If f = 0, then
√

2 (f((U(Zt)− c)+) + εt) =
√

2εt, which
reduces to the classical overdamped Langevin.
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Convergence of ISA

• The idea of using state-dependent noise makes sense
intuitively. However, is there convergence guarantee that
this improved Langevin dynamics ISA converge faster?

• Yes.

Theorem (Convergence of ISA (Fang et al. ’97))

Under the logarithmic cooling schedule of the form

εt =
E

ln t
, large enough t,

where E > c∗, for any δ > 0 we have

lim
t→∞

P (U(Zt) > inf U + δ) = 0.

• Key ingredient in the proof: both the spectral gap and the

log-Sobolev constant are of the order O
(

exp

{
c∗
εt

})
.
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c∗: the clipped critical height

• Recall the critical height E∗ in SA:

E∗ = sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))} − U(x)− U(y) + inf U

}

• The clipped critical height c∗ is defined to be

c∗ := sup
x,y∈Rd

inf
γ∈Γx,y

{
sup
t
{U(γ(t))∧c} − U(x)∧c− U(y)∧c+ inf U

}
.

• One way to understand c∗: pretend that we are minimizing
U ∧ c instead!

• We can show that the following two statements hold:

• c∗ ≤ E∗
• c∗ ≤ c− inf U
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Attempt #1: add state-dependent noise to the position

• Let’s try casting the idea of state-dependent noise to
kinetic simulated annealing.

• Attempt #1: add state-dependent noise to the position.
Consider the following dynamics:

dXt = Yt dt+
√
f((U(Xt)− c)+) dBt,

dYt = − 1

εt
Yt dt−∇U(Xt) dt+

√
2 dBt.

• The above SDE is no longer degenerate: Brownian noise is
added to both the position and momentum update.

• The resulting instantaneous stationary distribution in x
does not correspond to µfεt
• It seems adding state-dependent noise to the position is not

the right direction...
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Attempt #2: add state-dependent noise to the momentum

• Attempt #2: add state-dependent noise to the momentum.
Consider the following dynamics:

dXt = Yt dt,

dYt = −Yt dt−∇U(Xt) dt+
√

2(f((U(Xt)− c)+) + εt) dBt.

• This changes the instantaneous stationary distribution in
y, but not in x

• It seems adding state-dependent noise to momentum is
again not the right direction...
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• It seems adding state-dependent noise to momentum is
again not the right direction...
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Attempt #3: change the target function from U to εHε

• Recall µfεt :

µfεt(x) ∝ 1

f((U(x)− c)+) + εt
exp

(
−
∫ U(x)

inf U

1

f((u− c)+) + εt
du

)
.

• Let’s define Hεt :

Hε(x) :=

∫ U(x)

Umin

1

f((u− c)+) + ε
du+ ln (f((U(x)− c)+) + ε) .

so that
µfεt(x) ∝ e−Hεt (x).

• In SA,
µ0
εt(x) ∝ e−(1/εt)U(x).

We can understand as if the optimization landscape is
modified from (1/εt)U(x) to Hεt(x).
• The idea of state-dependent noise is embedded in the

modified optimization landscape.
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Idea of IKSA: landscape modification

• Consider the function

U0(x) = cos(2x) +
1

2
sin(x) +

1

3
sin(10x).

We take ε = 0.5, c = −1.5 and f = arctan.
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Landscape modification in the wild

Image source: https://kdlandscapingandsnowplowingbuffalo.

com/renovation-landscape-modification/

https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
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Improved kinetic simulated annealing (IKSA)

• Let’s replace U by εtHεt in KSA and call the resulting
dynamics IKSA.
• Improved kinetic Langevin diffusion (Xt, Yt)t≥0:

Definition (Improved kinetic Langevin)

The SDE of improved kinetic Langevin is given by

dXt = Yt dt,

dYt = − 1

εt
Yt dt− εt∇Hεt(Xt) dt+

√
2 dBt.

• This method can be understood as state-dependent
preconditioning of the gradient. While it is difficult to
compute Hεt , luckily computing its gradient is feasible:

∇xHε =
1 + f ′((U(x)− c)+)

f((U(x)− c)+) + ε
∇xU.

Note that Hε and U share the same set of stationary points.
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Improved kinetic simulated annealing (IKSA)

Definition (Improved kinetic Langevin)

The SDE of improved kinetic Langevin is given by

dXt = Yt dt,

dYt = − 1

εt
Yt dt− εt∇Hεt(Xt) dt+

√
2 dBt.

• The instantaneous stationary distribution at time t is the
product distribution of µfεt and a Gaussian distribution
with mean 0 and variance εt:

πfεt(x, y) ∝ µfεt(x)e
− ‖y‖

2

2εt ∝ e−Hεt (x)e
− ‖y‖

2

2εt .

• If f = 0, then ∇U(Xt) = εt∇Hεt(Xt), which reduces to the
classical kinetic Langevin.
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Convergence of IKSA

• The idea of running kinetic simulated annealing on a
modified landscape makes sense intuitively. However, are
there results that prove this so-called improved kinetic
Langevin dynamics IKSA converge faster?

• Yes.

Theorem (Convergence of IKSA (Choi ’20))

Under the logarithmic cooling schedule of the form

εt =
E

ln t
, large enough t,

where E > c∗, for any δ > 0 we have

lim
t→∞

P (U(Xt) > inf U + δ) = 0.

• The proof relies on the framework introduced in
Monmarché ’18.
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Michael Choi

Convergence of IKSA

• The idea of running kinetic simulated annealing on a
modified landscape makes sense intuitively. However, are
there results that prove this so-called improved kinetic
Langevin dynamics IKSA converge faster?
• Yes.

Theorem (Convergence of IKSA (Choi ’20))

Under the logarithmic cooling schedule of the form

εt =
E

ln t
, large enough t,

where E > c∗, for any δ > 0 we have

lim
t→∞

P (U(Xt) > inf U + δ) = 0.

• The proof relies on the framework introduced in
Monmarché ’18.
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IAKSA

• The convergence of IKSA depends on the parameter
c > inf U . Ideally we want to choose c to be close to inf U ,
but it can be hard to achieve in practice.

• To tune the parameter c, we use the running minimum
generated by the algorithm on the fly by setting

ct = min
0≤u≤t

U(Xu).

• c∗,t is now time-dependent, and we have to choose E > c∗,t.

• Picture to have in mind: the landscape is adaptively
improving as the algorithm progresses.

• The resulting diffusion is non-Markovian, and belongs to
the class of self-interacting diffusions.
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IAKSA

Theorem (Convergence of IAKSA (Choi ’20))

Consider the dynamics

dXt = Yt dt,

dYt = − 1

εt
Yt dt− εt∇Hεt,ct(Xt) dt+

√
2 dBt.

where ct = min0≤u≤t U(Xu). Under the logarithmic cooling
schedule of the form

εt =
E

ln t
, large enough t,

where E > c∗,t, for any δ > 0 we have

lim
t→∞

P (U(Xt) > inf U + δ) = 0.
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Numerical results

• We compare the following Langevin-based annealing
algorithms on some standard global optimization
benchmark functions:
• IAKSA
• IASA, i.e. ISA with the same f and ct in IAKSA
• KSA
• SA

• We adopt the Euler-Maruyama discretization and use
f = arctan, suggested by Fang et al. ’97.

• For further details on the parameters used, please refer to
the paper.
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Numerical results

• We plot log10 P (minv≤t U(Xv) > inf U + δ) or
log10 P (minv≤t U(Zv) > inf U + δ) against log10 t, and
similarly we plot log10 P (U(Xt) > inf U + δ) or
log10 P (U(Zt) > inf U + δ) against log10 t. To compute
these probabilities, we run 100 independent replicas and
count the proportion of replicas for which
U(Xt) > inf U + δ or minv≤t U(Xv) > inf U + δ.

• We inject the same sequence of Gaussian noise in each of
the 100 replicas across all four annealing methods for fair
comparison.



Michael Choi

Rastrigin function

• The two-dimensional Rastrigin function:

U3(x1, x2) = 20 +

2∑
i=1

[
x2
i − 10 cos (2πxi)

]
Image source: Wikipedia

https://en.wikipedia.org/wiki/Rastrigin_function

https://en.wikipedia.org/wiki/Rastrigin_function
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Rastrigin function

1 2 3 4 5 6
log10t

−4

−3

−2

−1

0
lo
g 1

0ℙ
(m

in
v
≤
tU

3(
X v
)>

10
) o

r l
og

10
ℙ
(m

in
v
≤
tU

3(
Z v
)>

10
)

IAKSA
KSA
IASA
SA

log10 P (minv≤t U3(Xv) > inf U + δ) or
log10 P (minv≤t U3(Zv) > inf U + δ) against log10 t



Michael Choi

Rastrigin function
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Ackley function
• The two-dimensional Ackley function:

U1(x1, x2) = −20 exp

−0.2

√√√√ 1

2

2∑
i=1

x2i

− exp

 1

2

2∑
i=1

cos (2πxi)

 + 20 + e

Image source: PyPi
https://pypi.org/project/landscapes/#ackley-function

https://pypi.org/project/landscapes/#ackley-function
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Ackley function

https://streamable.com/e/yeeftx

https://streamable.com/e/yeeftx
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Use of state-dependent noise

• There seems to be very limited literature of
state-dependent noise in stochastic optimization

• Some work that I am aware of: Fang et al. (SPA ’97),
Stuart and Mattingly (MPRF ’02), Guo et al. ’20

• This work hopes to promote the idea of state-dependent
noise in sampling and optimization
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Landscape modification

• Stochastic perspective: the use of state-dependent noise
can be understood as a variance reduction technique

• Optimization perspective: this is in some sense
“equivalent” to changing the target function from U to
εtHεt

• In importance sampling we sample from alternative
distribution for “better” sampling. In landscape
modification we optimize an alternative function for
“better” landscape.

• Can other variance reduction techniques for Langevin
diffusion give new landscape modification?

• Conversely, can landscape modifcation gives new insights
to variance reduction?
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Image source: https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/

Thank you! Question(s)?

https://kdlandscapingandsnowplowingbuffalo.com/renovation-landscape-modification/
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