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Introduction

1 Paper: arXiv:2411.08295, joint work with Max Hird (UCL) and Youjia
Wang (NUS)

2 Much of my recent research focus is on information theory of Markov
chains, in particular information projections and
information geometry of Markov chains and MCMC algorithms.

3 This paper is interesting from at least the following two perspectives.
First, we study new information projections of Markov chains. This
unveils previously unknown geometric structure in the space of
transition matrices of Markov chains.

4 Second, we use this discovered geometric structure “for good”.
Precisely, these information projections give rise to improved MCMC
samplers, thus leading to new algorithmic development in MCMC.
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Setup

1 Throughout this paper, we consider Markov chains on a finite state
space X .

2 We denote by L � LpX q to be the set of transition matrices on X .

3 We write Spπq � L to be the set of π-stationary transition matrices,
that is,

Spπq :� tP P L; πP � πu.

4 For P P Spπq, we write P� to be the time-reversal or the
ℓ2pπq-adjoint of P.

5 We write Lpπq � L to be the set of π-reversible transition matrices,
that is,

Lpπq :� tP P L; P� � Pu.
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Setup: isometric involution matrices with respect to
π

1 Q is said to be an isometric involution on X with respect to π as in
Andrieu and Livingstone ’21 if and only if Q satisfies Q2 � I and
Q� � Q.

2 Examples of Q: I ,�p2Π� I q, where Π is the transition matrix with
each row equals to π.

3 We write Ipπq to be the set of isometric involution matrices on X
with respect to π.

4 Let Q P Ipπq. L P Spπq is said to be pπ,Qq-self-adjoint if and only if

L� � QLQ.

5 We write Lpπ,Qq � L to be the set of pπ,Qq-self-adjoint transition
matrices. In the special case of Q � I , we recover that
Lpπ, I q � Lpπq.
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Setup: “equi-probability” permutation matrices with
respect to π

1 Let P be the set of permutations on X . Let ψ P P be a permutation,
and Qψ be the induced permutation matrix with entries
Qψpx , yq :� δy�ψpxq for all x , y P X , where δ is the Dirac mass
function.

2 Define a set of “equi-probability” permutations with respect to π to
be

Ψpπq :� tψ P P; @x P X , ψpψpxqq � x , πpxq � πpψpxqqu.

3 Ψpπq is non-empty for all π since the identity permutation always
belongs to Ψpπq.
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Linking isometric involution with “equi-probability”
permutation

1 An isometric involution matrix need not be a transition matrix, e.g.
�p2Π� I q. But what is an isometric involution transition matrix?

Theorem 1 (C., Hird and Wang ’24)

Ipπq X L � tQψ; ψ P Ψpπqu.

2 Takeaway message #1: on a finite state space, the set of isometric
involution transition matrices with respect to π equals to the set of
equi-probability permutation matrices with respect to π.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 7 / 46



Linking isometric involution with “equi-probability”
permutation

1 An isometric involution matrix need not be a transition matrix, e.g.
�p2Π� I q. But what is an isometric involution transition matrix?

Theorem 1 (C., Hird and Wang ’24)

Ipπq X L � tQψ; ψ P Ψpπqu.

2 Takeaway message #1: on a finite state space, the set of isometric
involution transition matrices with respect to π equals to the set of
equi-probability permutation matrices with respect to π.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 7 / 46



Linking isometric involution with “equi-probability”
permutation

1 An isometric involution matrix need not be a transition matrix, e.g.
�p2Π� I q. But what is an isometric involution transition matrix?

Theorem 1 (C., Hird and Wang ’24)

Ipπq X L � tQψ; ψ P Ψpπqu.

2 Takeaway message #1: on a finite state space, the set of isometric
involution transition matrices with respect to π equals to the set of
equi-probability permutation matrices with respect to π.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 7 / 46



1 Introduction

2 Setting and notations
Remarks

3 Information projections
Projection onto Lpπ,Qq
Remarks

4 Comparisons of some Markov chain samplers

5 Alternating projections to combine Qs
Alternating projections
Remarks

6 The “maximum speed limit” of projection samplers
A necessary condition of Rn � Π in terms of trace
A necessary condition of PpQq � Π via the Sylvester’s equation
TrpPq � 1 is necessary and sufficient of R8 � Π under some additional
assumptions

7 Tuning strategies of Q
Tuning strategies: overview
Tuning Q via optimization and Markov chain assignment problems
Tuning Q adaptively in a single run

8 Concluding messages and outlook



Remarks

1 Why is the notion of isometric involution important? It turns out
that, many state-of-the-art non-reversible MCMC algorithms, while
being non-reversible with respect to π, are in fact pπ,Qq-self-adjoint.
This motivates the study in Andrieu and Livingstone (AoS, ’21).

2 We shall reveal more connections between equi-probability
permutations and equi-energy samplers by Kou et al. (AoS, ’06).
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The KL divergence between Markov chains

1 Let us first recall the KL divergence between transition matrices of
Markov chains.

Definition 2 (KL divergence between Markov chains)

For given π and transition matrices M, L P L, we define the KL-divergence
from L to M with respect to π as

Dπ
KLpM}Lq :�

¸
xPX

πpxq
¸
yPX

Mpx , yq ln

�
Mpx , yq

Lpx , yq



,

where several standard conventions apply.

2 Note that π need not be the stationary distribution of L or M. In
particular, when M is assumed to be π-stationary, Dπ

KLpM}Lq can be
interpreted as the KL divergence rate from L to M.
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Projection onto Lpπ,Qq

1 At MCQMC 2024, Max Hird raised to me the following question:
given P P Spπq and Q be an isometric involution transition matrix
with respect to π, what is a projection of P onto the set of
pπ,Qq-self-adjoint transition matrices Lpπ,Qq under Dπ

KL?

2 That is, what is
argmin
MPLpπ,Qq

Dπ
KLpP}Mq?

3 In the above setting, we define

PpQq :�
1

2
pP � QP�Qq.

This is known as a mixture of permuted Markov chains in Dubail ’24.
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Pythagorean identity

Theorem 3 (C., Hird and Wang ’24)

Let P P Spπq and Q P Ipπq X L. For any M P Lpπ,Qq, we have

Dπ
KLpP}Mq � Dπ

KLpP}PpQqq � Dπ
KLpPpQq}Mq.

1 The above result implies that

PpQq � argmin
MPLpπ,Qq

Dπ
KLpP}Mq.

2 Takeaway message #2: PpQq is the unique information projection of
P onto the set of pπ,Qq-self-adjoint transition matrices.
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Remarks

1 Pythagorean identities are cornerstone results in the field of
information geometry, see e.g. the work of Amari or Wolfer and
Watanabe ’21 for results on information geometry of transition
matrices.

2 In the paper, we also establish the Pythagorean identity under the
squared-Frobenius norm, that is, we have results of the form

∥P �M∥2F �
∥∥P � PpQq

∥∥2
F
�
∥∥PpQq �M

∥∥2
F
,

where ∥�∥F is the matrix Frobenius norm.

3 More generally, I think the result can be generalized to some Bregman
divergences between matrices (not in the paper).
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Comparison theory

1 In the context of MCMC, Markov chain samplers such as
Metropolis-Hastings or Gibbs samplers are frequently used to sample
approximately from π.

2 Given ergodic P P Spπq and an isometric involution transition matrix
Q, there are now quite a few transition matrices associated with these
objects:

P
QP
PQ
QPQ

PpQq �
1

2
pP � QP�Qq

the mixture αP � p1� αqQP�Q, where α P r0, 1s.

Which one is the “best”? E.g. which transition matrix converges to π
the fastest or performs the “best” under some suitable metrics?
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Comparison theory

Theorem 4 (C., Hird and Wang ’24)

Under most commonly used metrics and suitable assumptions (e.g.
P P Lpπq),

PpQq

is preferred over the others.

1 The convergence metrics studied in the paper include

SLEM: Second Largest Eigenvalue in Modulus
right spectral gap
Dobrushin coefficient
Kemeny’s constant
worst-case asymptotic variance
average asymptotic variance

2 Takeaway message #3: PpQq is a preferred sampler of π compared
with P or other competing transition matrices, based on most
commonly used metrics.
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Alternating projections

1 Let m P N and suppose that we have a sequence of isometric
involution transition matrices Qi P Ipπq X L for i P J0,m � 1K. Is
there a way to combine these Qi to further improve the convergence
to equilibrium?

2 One natural idea in this context is alternating projections.
Specifically, given a P P Lpπq, we first project it onto the space
Lpπ,Q0q to obtain R1 � R1pQ0, . . . ,Qm�1,Pq :� PpQ0q.

3 Second, we project R1 onto the space Lpπ,Q1q to obtain
R2 � R2pQ0, . . . ,Qm�1,Pq :� R1pQ1q.

4 Third, we project R2 onto the space Lpπ,Q2q to obtain
R3 � R3pQ0, . . . ,Qm�1,Pq :� R2pQ2q. We proceed iteratively and
the projection order is deterministic in a cycle in the order of
Q0, . . . ,Qm�1. Precisely, for n P N, we define

Rn � RnpQ0, . . . ,Qm�1,Pq :� Rn�1pQpn�1q mod mq

with the initial condition R0 :� P.
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Visualization of alternating projections with m � 1
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Alternating projections

1 Main benefit of alternating projections: at each step, the projected
transition matrix is improved when compared with the previous
unprojected transition matrix, in view of the results in the previous
section. In other words, we make use of the geometric structure to
yield better Markov chain sampler.

2 Denote the intersections of Lpπ,Q0q, . . . ,Lpπ,Qm�1q to be

E � Epπ,Q0, . . . ,Qm�1q :�
m�1£
k�0

Lpπ,Qkq.

Let R8 be an information projection of P P Lpπq onto E , that is,

R8 � R8pQ0, . . . ,Qm�1,Pq :� argmin
NPE

Dπ
KLpP}Nq.

It can be shown that R8 is unique.
3 Using the theory of alternating projections, we prove that Rn

converges to the limit R8 elementise.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 22 / 46



Alternating projections

1 Main benefit of alternating projections: at each step, the projected
transition matrix is improved when compared with the previous
unprojected transition matrix, in view of the results in the previous
section. In other words, we make use of the geometric structure to
yield better Markov chain sampler.

2 Denote the intersections of Lpπ,Q0q, . . . ,Lpπ,Qm�1q to be

E � Epπ,Q0, . . . ,Qm�1q :�
m�1£
k�0

Lpπ,Qkq.

Let R8 be an information projection of P P Lpπq onto E , that is,

R8 � R8pQ0, . . . ,Qm�1,Pq :� argmin
NPE

Dπ
KLpP}Nq.

It can be shown that R8 is unique.

3 Using the theory of alternating projections, we prove that Rn

converges to the limit R8 elementise.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 22 / 46



Alternating projections

1 Main benefit of alternating projections: at each step, the projected
transition matrix is improved when compared with the previous
unprojected transition matrix, in view of the results in the previous
section. In other words, we make use of the geometric structure to
yield better Markov chain sampler.

2 Denote the intersections of Lpπ,Q0q, . . . ,Lpπ,Qm�1q to be

E � Epπ,Q0, . . . ,Qm�1q :�
m�1£
k�0

Lpπ,Qkq.

Let R8 be an information projection of P P Lpπq onto E , that is,

R8 � R8pQ0, . . . ,Qm�1,Pq :� argmin
NPE

Dπ
KLpP}Nq.

It can be shown that R8 is unique.
3 Using the theory of alternating projections, we prove that Rn

converges to the limit R8 elementise.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 22 / 46



Alternating projections

Theorem 5 (C., Hird and Wang ’24)

Let m, n P N. Let P P Lpπq and Qi P Ipπq X L for i P J0,m � 1K be a
sequence of isometric involution transition matrices. Define Rn as earlier.
The following limit exists (pointwise or in total variation):

lim
nÑ8

Rn � R8,

and

R8 P Lpπq X E , TrpR8q � TrpPq.

1 Takeaway message #4: consider using the alternating projections Rn

or even R8 if possible, since these cannot be worse off than the
original P.
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Remarks

1 Alternating projections of Gibbs samplers have been studied in
Diaconis et al. ’10 and more recently in a paper by Qian Qin (AoAP,
’24).

2 Assume that we can simulate P, can we simulate the trajectories of
the Markov chain with transition matrix Rn? In the paper, we have
devised a recursive simulation procedure to do so.

3 What is the rate of convergence of Rn towards R8? It turns out to
depend on the angle between suitable subspaces, see the paper.
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The maximum speed limit in (School Zone of)
Singapore

Image Source: Land Transport Authority, Singapore
Image Link: https://www.lta.gov.sg/content/ltagov/en/getting around/
driving in singapore/driving rules and regulations.html
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The maximum speed limit of projection sampler

1 What are the situations that we have Rn � Π? This is an ideal
situation since we have an exact sampler by simulating directly Rn!
This is unlike most MCMC samplers which are approximate samplers
of π.
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A necessary condition of Rn � Π in terms of trace

Corollary 6 (C., Hird and Wang ’24)

If Rn � Π for some n P NY t8u, then

TrpPq � 1.

This implies that, for π-reversible positive-definite transition matrices,
Rn � Π since TrpPq ¡ 1.
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A necessary condition of PpQq � Π via the
Sylvester’s equation

Let λpPq be the set of eigenvalues of the matrix P. A direct application of
the Sylvester’s equation yields the following result:

Corollary 7 (C., Hird and Wang ’24)

Let P P Spπq and Q P Ipπq X L be an isometric involution transition
matrix. If PpQq � Π, then

λpPq X λp�P�q � H,

that is, P and �P� have at least one common eigenvalue.
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TrpPq � 1 is necessary and sufficient of R8 � Π
under some additional assumptions

Let π be the discrete uniform distribution, and P be a symmetric doubly
stochastic matrix.

Theorem 8 (C., Hird and Wang ’24)

Under the above assumptions and suitable choices of the permutation
matrices, R8 � Π if and only if TrpPq � 1.

Takeaway message #5: consider transforming the transition matrix so that
it satisfies TrpPq � 1. Depending on P, even if it may not lead to Rn � Π,
but at least it seems to make the Markov chain “better-conditioned”.
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Tuning strategies: overview

1 The isometric involution transition matrix Q P Ipπq X L can be
understood as a parameter in these algorithms, and the improvement
depends on the tuning of Q.

2 For instance, the choice of Q � I is always feasible, yet it leads to no
improvement when P P Lpπq since PpI q � P.

3 On the other hand, we have seen in previous section that depending
on P it might be possible to achieve Rn � Π or R8 � Π with suitable
choices of Qs.
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Tuning Q via optimization and Markov chain
assignment problems

1 The first strategy seeks to find an optimal Q that minimizes the
discrepancy between PpQq and Π or more generally between Rn and
Π.

2 Precisely, we would like to find Q that minimizes the π-weighted KL
divergence for a given P P Spπq:

Q�,KL � Q�,KLpPq :� argmin
QPIpπqXL

Dπ
KLpPpQq}Πq.

3 The above optimization problems may not be solved in realistic time
frame in practice, since π may involve normalization constant that is
non-tractable.

4 Luckily, the Pythagorean identity comes to the rescue!
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Tuning Q via optimization and Markov chain
assignment problems

1 The Pythagorean identity gives that

Q�,KL � argmax
QPIpπqXL

Dπ
KLpP}PpQqq � argmax

ψPΨpπq
Dπ
KLpP}PpQψqq.

2 The rightmost maximization problem can be understood as a Markov
chain assignment problem constrained to choosing equi-probability
permutations within the set Ψpπq. While in general assignment
problems can be solved in polynomial time in |X |, this may still be
computationally infeasible in practice since |X | might be
exponentially large in many models of interest in the context of
MCMC, e.g. Ising or Potts model.
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Tuning Q via optimization and Markov chain
assignment problems

1 The earlier considerations can be generalized to consider
multidimensional Markov chain assignment problems. Specifically, we
seek to solve, for m, l P N,

argmin
ψiPΨpπq,@iPJ0,m�1K

Dπ
KLpRlpQψ0 , . . . ,Qψm�1 ,Pq}Πq

� argmax
ψiPΨpπq,@iPJ0,m�1K

l�1̧

j�0

Dπ
KLpRjpQψ0 , . . . ,Qψm�1 ,Pq}Rj�1pQψ0 , . . . ,Qψm�1 ,Pqq.

2 Multidimensional assignment problems are in general NP-hard to
solve, but there are useful heuristics in practice, see the paper for
more discussions.
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Tuning Q adaptively in a single run

1 Let H : X Ñ R be a target energy function, and πβ be its associated
Gibbs distribution at inverse temperature β ¥ 0, that is, for x P X ,

πβpxq :�
e�βHpxq

Zβ
,

where Zβ :�
°

xPX e�βHpxq is the normalization constant. Thus, we
see that πβpxq � πβpyq if and only if Hpxq � Hpyq, that is,
equi-probability is the same as equi-energy.

2 The second tuning strategy lies in adjusting Q adaptively on the fly as
the algorithm progresses. In short, the algorithm learns the
equi-probability or equi-energy permutation adaptively on the fly.
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see that πβpxq � πβpyq if and only if Hpxq � Hpyq, that is,
equi-probability is the same as equi-energy.

2 The second tuning strategy lies in adjusting Q adaptively on the fly as
the algorithm progresses. In short, the algorithm learns the
equi-probability or equi-energy permutation adaptively on the fly.

Michael Choi (NUS) McMaster AI Theory Seminar April 2025 41 / 46



Tuning Q adaptively in multiple runs

1 We use an exploration Markov chain, such as the proposal chain in
Metropolis-Hastings or the Metropolis-Hastings chain at high
temperature, for k P N times. Each time an equi-energy permutation
matrix pQnq

k
n�0 is generated or learnt on the fly.

2 We then combine these permutation matrices using alternating
projections.

3 This idea is inspired by the equi-energy sampler of Kou et al. (AoS,
’06).
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Tuning Q adaptively in multiple runs

1 Animation time! Ising model on the line. We shall see that the
adaptive projection sampler is able to hop between the two modes
(all-black and all-white), and the standard Metropolis-Hastings
struggles to transverse between the two modes.

2 Animation credit and computational assistance: Zheyuan Lai (NUS)
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Recap and outlook

1 This paper presents a new technique of improving the convergence of
Markov chains via permutations and projections.

2 In a broad sense, this technique can be understood as a
preconditioning technique to improve the mixing of Markov chain.

3 I find it intriguing since we are using various mathematical ideas “for
good” in the context of MCMC: ideas from information projections,
alternating projections, Sylvester’s equations, assignment problems all
naturally come together to help us design improved MCMC samplers.

4 Some ideas for future work: extending the methodology to more
general state space and more general processes such as diffusion
processes? Can we design better samplers for problems in theoretical
computer science where sampling is crucial? Implications for
Sequential Monte Carlo? You are more than welcome to join me if
interested!
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Thank you! Question(s)?
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