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Introduction

• Simulated annealing is a stochastic optimization algorithm
that has found huge success in statistics and image
processing.

• As we shall see, it involves studying the convergence of a
non-homogeneous Markov chain/process.

• Our focus today is an accelerated version of simulated
annealing proposed by Choi.

• Reference: “An accelerated variant of simulated annealing
that converges under fast cooling” arXiv:1901.10269
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Introduction

• Let π be a discrete or continuous distribution.
Goal: Sample from π or estimate π(f), where

π(f) =
∑
x

f(x)π(x), or π(f) =

∫
f(x)π(dx).

• Difficulty: At times it is impossible to apply classical
Monte Carlo methods, since π is often of the form

π(x) =
e−βH(x)

Z
,

where Z is a normalization constant that cannot be
computed.
• Idea of Markov chain Monte Carlo (MCMC):

Construct a Markov chain that converges to π, which only
depends on the ratio

π(y)

π(x)
.

Thus there is no need to know Z.
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The Metropolis-Hastings algorithm

• In our talk today, we will focus on continuous-time
Metropolis-Hastings algorithm.

• Two ingredients:
(i). Target distribution: π
(ii). Proposal chain with generator Q = (Q(x, y))x,y.
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The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain Q, target distribution π
1 (Generate the proposal): Given Xt, propose the next jump

Yt+s ∼ Q(Xt, ·) according to Q, say at time t+ s
2 (Acceptance-rejection): Take

Xt+s =

{
Yt+s, with probability α(Xt, Yt+s),

Xt, with probability 1− α(Xt, Yt+s),

where

α(x, y) := min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
is known as the acceptance probability.
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The Metropolis-Hastings algorithm

Definition

The Metropolis-Hastings algorithm, with proposal chain Q and
target distribution π, is a Markov chain X = (Xt)t≥0 with
generator

M1(x, y) =

{
α(x, y)Q(x, y), for x 6= y,

−
∑

y; y 6=xM1(x, y), for x = y.
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The Metropolis-Hastings (MH) algorithm

Theorem

Given target distribution π and proposal chain Q, the
Metropolis-Hastings chain is

• reversible with respect to π, that is, for all x, y,

π(x)M1(x, y) = π(y)M1(y, x).

• (Ergodic theorem of MH) If P is irreducible, then

lim
t→∞

1

t

∫ t

0
f(Xs) ds = π(f).
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Simulated annealing

• Goal: Find the global minimizers of a target function U .

• Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to π∞, which is supported on the set of
global minima of U .

• Target distribution: Gibbs distribution πT (t) with
temperature T (t) that depends on time t

πT (t)(x) =
e−U(x)/T (t)

ZT (t)
,

ZT (t) =
∑
x

e−U(x)/T (t).

Proposal chain Q: symmetric
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Simulated annealing

• The temperature cools down T (t)→ 0 as t→∞, and we
expect the Markov chain get “frozen” at the set of global
minima Umin:

π∞(x) := lim
t→∞

πT (t)(x) =


1

|Umin|
, for x ∈ Umin,

0, for x /∈ Umin.
Umin := {x; U(x) ≤ U(y) for all y}.
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Simulated annealing

Algorithm 2: Simulated annealing

Input: Symmetric proposal chain Q, target distribution
πT (t), temperature schedule T (t)

1 (Generate the proposal): Given Xt, propose the next jump
Yt+s ∼ Q(Xt, ·) according to Q, say at time t+ s

2 (Acceptance-rejection): Take

Xt+s =

{
Yt+s, with probability αt(Xt, Yt+s),

Xt, with probability 1− αt(Xt, Yt+s),

where

αt(x, y) := min

{
πT (t)(y)Q(y, x)

πT (t)(x)Q(x, y)
, 1

}
= min

{
e
U(x)−U(y)

T (t) , 1

}
is the acceptance probability.
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Simulated annealing

Definition

Simulated annealing, with proposal chain Q, target distribution
πT (t) and temperature schedule T (t), is a non-homogeneous
Markov chain with generator at time t to be

M1,t(x, y) =

{
αt(x, y)Q(x, y), for x 6= y,

−
∑

y; y 6=xM1,t(x, y), for x = y.
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Optimal cooling schedule

• The temperature schedule T (t) cannot be too slow: it may
take too long for the Markov chain to converge

• T (t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.

Theorem (Hajek ’88, Holley and Stroock ’88)

The Markov chain generated by simulated annealing converges
to π∞ in total variation distance if and only if for any ε > 0,

T (t) =
cM1 + ε

ln(t+ 1)
,

where cM1 is known as the optimal hill-climbing constant that
depends on the target function U and proposal chain Q.
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What is cM1
?

• cM1 is the highest hill one need to climb from a local
minimum to a global minimum.

• A path γ from x to y: any sequence of points starting
from x0 = x, x1, x2, . . . , xn = y such that Q(xi−1, xi) > 0
for i = 1, 2, . . . , n.

• Γx,y := set of paths from x to y.

• Elev(γ) := highest elevation along a path γ ∈ Γx,y =
max {U (γi) ; γi ∈ γ}
• H(x, y) := min{Elev(γ); γ ∈ Γx,y}.

Definition

cM1 = cM1(Q,U) := max
x,y
{H(x, y)− U(x)− U(y)}.
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Accelerated Metropolis-Hastings M2

• There are many variants of Metropolis-Hastings with
improved convergence, e.g. lifting (Chen et al. ’99),
non-reversible MH (Hwang et al. 93, Bierkens ’16), ...

• Today we will focus on a variant that we call M2 (Choi
SPA ’19+, Choi and Huang JTP ’19+)
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Accelerated Metropolis-Hastings M2

Definition

With proposal chain Q and target distribution π, the
accelerated MH is a Markov chain with generator M2 given by

M2(x, y) =

max

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
Q(x, y), for x 6= y,

−
∑

y; y 6=xM2(x, y), for x = y.

• Recall that M1(x, y) = min

{
π(y)Q(y, x)

π(x)Q(x, y)
, 1

}
Q(x, y) for

x 6= y.
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Accelerated Metropolis-Hastings M2

We write 〈f, g〉π :=
∑
f(x)g(x)π(x) and

λ2(Mi) := inf〈1,f〉π=0; 〈f,f〉π≤1〈−Mif, f〉π is the spectral gap of
Mi for i = 1, 2.

Theorem (Comparison between M1 and M2)

Given target distribution π and proposal chain Q, M2 is

• reversible with respect to π, that is, for all x, y,

π(x)M2(x, y) = π(y)M2(y, x).

• 〈M2f, f〉π ≤ 〈M1f, f〉π
• λ2(M2) ≥ λ2(M1).
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Accelerated simulated annealing

Definition

Accelerated simulated annealing, with proposal chain Q, target
distribution πT (t) (i.e. the Gibbs distribution) and temperature
schedule T (t), is a non-homogeneous Markov chain with
generator at time t to be

M2,t(x, y) =

max

{
πT (t)(y)Q(y, x)

πT (t)(x)Q(x, y)
, 1

}
Q(x, y), for x 6= y,

−
∑

y; y 6=xM2,t(x, y), for x = y.

• Recall the dynamics of classical simulated annealing:

M1,t(x, y) = min

{
πT (t)(y)Q(y, x)

πT (t)(x)Q(x, y)
, 1

}
Q(x, y) for x 6= y.
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Main results

• The general message is that we can operate faster cooling
schedule on M2,t than M1,t!

• Similar to the classical case, the convergence behaviour of
M2,t depends critically on a constant we call cM2 .
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Main results

Theorem (Choi ’19)

• Case 1: cM2 > 0
The Markov chain generated by M2,t converges to π∞ in
total variation distance if for any ε > 0,

T (t) =
cM2 + ε

ln(t+ 1)
.
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Main results

Theorem (Choi ’19)

• Case 2: cM2 ≤ 0
The Markov chain generated by M2,t converges to π∞ in
total variation distance if T (t) satisfies

lim
t→∞

(
d

dt
T (t)

)
e
cM2
T (t)

T (t)2
= 0.

Examples of fast cooling schedule that satisfy the above
requirement are

1. (power law cooling) T (t) = (t+ 1)−α, where α ∈ (0, 1).

2. (powers of logarithmic cooling) T (t) = (log(t+ 1))
−k

, where
k > 1.

3. T (t) = (t+ 1)−α (log(t+ 1))
−1

, where α ∈ (0, 1).
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• cM1 := maxx,y∈X {H(x, y)− U(x)− U(y)} = largest hill to
climb from a local minimum to a global minimum.

• cM2 := maxx,y∈X

{
maxz,w∈γx,y , z=γx,yi ,w=γx,yi+1 for some i

Elev(γx,y)=H(x,y)

U(z) ∧

U(w)− U(x)− U(y)

}
≈ second largest hill to climb from a

local minimum to a global minimum

• cM1 ≥ cM2 . When U has distinct values, cM1 > cM2 .
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Main results

Theorem (XM2 effectively escapes local minimum while
XM1 may get trapped under fast cooling)

Suppose that x is a local minimum of U and under any cooling
schedule,

Px(XM2
t = x ∀t ≥ 0) = 0.

Under cooling schedule of the form

T (t) =
d

log(t+ 1)
,

where d < cM1, then

Px(XM1
t = x ∀t ≥ 0) > 0.



Michael Choi

1 Preliminaries

2 Accelerated Metropolis-Hastings and simulated annealing
algorithms

3 Summary



Michael Choi

Summary

• Propose an accelerated simulated annealing M2,t

X Convergence guarantee under fast cooling that depends on
cM2

. The optimal cooling schedule can be faster than
logarithmic cooling depending on Q and U .

X With probability 1 it will escape local minimum even under
fast cooling

× Relatively hard to simulate

• Classical simulated annealing M1,t

× Convergence guarantee under slow cooling that depends on
cM1

× With positive probability it can get stuck in local minimum
under fast cooling

X Relatively easy to simulate
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Thank you! Question(s)?
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