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¢ Simulated annealing is a stochastic optimization algorithm
that has found huge success in statistics and image
processing.

® As we shall see, it involves studying the convergence of a
non-homogeneous Markov chain/process.

® Qur focus today is an accelerated version of simulated
annealing proposed by Choi.

® Reference: “An accelerated variant of simulated annealing
that converges under fast cooling” arXiv:1901.10269
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Introduction

® Let 7 be a discrete or continuous distribution.
Goal: Sample from 7 or estimate m(f), where

=Y o) o n= [t

e Difficulty: At times it is impossible to apply classical
Monte Carlo methods, since 7 is often of the form

ﬂ'(.fl:) = Z Y
where Z is a normalization constant that cannot be

computed.

¢ Idea of Markov chain Monte Carlo (MCMC):
Construct a Markov chain that converges to m, which only
depends on the ratio

Thus there is no need to know Z.
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The Metropolis-Hastings algorithm

¢ In our talk today, we will focus on continuous-time
Metropolis-Hastings algorithm.

® Two ingredients:
(i). Target distribution: 7
(ii). Proposal chain with generator Q = (Q(z,v))z,y-
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The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain @), target distribution 7
1 (Generate the proposal): Given Xy, propose the next jump
Yits ~ Q(Xy, ) according to Q, say at time ¢t + s
2 (Acceptance-rejection): Take

Yoo Yits, with probability a(Xy, Yiis),
7\ X,  with probability 1 — a(Xy, Yiis),

is known as the acceptance probability.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, with proposal chain @ and
target distribution , is a Markov chain X = (X¢);>0 with
generator

oz, y)Q(z,y), for z # y,
— Zy; y#T Ml(x7y)7 for z = Y.

Ml(xvy) = {
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The Metropolis-Hastings (MH) algorithm

Given target distribution w and proposal chain Q, the
Metropolis-Hastings chain is

® reversible with respect to w, that is, for all x,y,

7.‘-(ZE)*]\Il ($, y) = 7I-(y)]wi (yv 33)

® (Ergodic theorem of MH) If P is irreducible, then

1
lim —
t—oo t

/0 £(Xs) ds = m(f).
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Simulated annealing

® Goal: Find the global minimizers of a target function U.

¢ Idea of simulated annealing: Construct a
non-homogeneous Metropolis-Hastings Markov chain
that converges to 7, which is supported on the set of
global minima of U.

® Target distribution: Gibbs distribution ;) with
temperature T'(¢) that depends on time ¢

o~U@)/T(t)

(@) = Zr (1)

Zrgy = 3 e V@I,

Proposal chain ): symmetric



Simulated annealing

¢ The temperature cools down T'(t) — 0 as t — oo, and we
expect the Markov chain get “frozen” at the set of global
minima Upyip:
1

Too(T) := Jlim 77 (z) = { |Unminl|’

0, for ¢ Upnin.
Upin = {z; U(z) < U(y) for all y}.

for z € Upin,



Simulated annealing

Algorithm 2: Simulated annealing

Input: Symmetric proposal chain @), target distribution
Tr(t), temperature schedule T'(t)
1 (Generate the proposal): Given Xy, propose the next jump
Yiys ~ Q(Xy,-) according to Q, say at time ¢ + s
2 (Acceptance-rejection): Take

o Yits, with probability oy (Xy, Yiis),
7\ X,  with probability 1 — oy (X, Yigs),

a(x,y) = min{mﬂ} _ min{e[w’l}

is the acceptance probability.
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Simulated annealing

Simulated annealing, with proposal chain @, target distribution
mr(y) and temperature schedule T'(¢), is a non-homogeneous
Markov chain with generator at time ¢ to be

a\ T, xZ, ) fOI' X s
M y(z,y) = 4 @& 9)Q@Y) %Yy
a Zy; y#x M (z,y), forz=y.
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Optimal cooling schedule

¢ The temperature schedule T'(t) cannot be too slow: it may
take too long for the Markov chain to converge

e T(t) cannot converge to zero too fast: we can prove that
with positive probability the Markov chain may get stuck
at local minimum.

The Markov chain generated by simulated annealing converges
to oo n total variation distance if and only if for any € > 0,

Cym, T €
i) =
®) In(t+1)’

where cpy, s known as the optimal hill-climbing constant that
depends on the target function U and proposal chain Q.
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What is ¢, ?

® ¢y, is the highest hill one need to climb from a local
minimum to a global minimum.

e A path v from x to y: any sequence of points starting
from zo = z,x1,x9,...,2, =y such that Q(z;—1,2;) >0
fori=1,2,...,n.

e 'Y .= get of paths from x to y.

¢ Elev(y) := highest elevation along a path v € 'Y =
max {U (i) ;7 €7}
* H(xz,y):= min{Elev(y); v € [*¥}.
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Accelerated Metropolis-Hastings M,

® There are many variants of Metropolis-Hastings with
improved convergence, e.g. lifting (Chen et al. ’99),
non-reversible MH (Hwang et al. 93, Bierkens '16), ...

¢ Today we will focus on a variant that we call My (Choi
SPA 19+, Choi and Huang JTP '19+)
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Accelerated Metropolis-Hastings M,

With proposal chain @) and target distribution =, the
accelerated MH is a Markov chain with generator My given by

My(w,y) = max{w(w)@@,y)’l}c?( W), fora#y,

a Z.’U; yF#T Mz(x7y)7 for x = Y.
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Accelerated Metropolis-Hastings M,

With proposal chain @) and target distribution =, the
accelerated MH is a Markov chain with generator My given by

My(w,y) = max{w(w)@@,y)’l}c?( W), fora#y,

a Z.’U; yF#T Mz(‘r?y)a for x = Y.

® Recall that M (z,y) = min{%, 1}@(%9) for
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Accelerated Metropolis-Hastings M,

We write (f,g)r :=>_ f(x)g(z)m(z) and
A2(M;) »=infq 5y —o. (f,1)y.<1(—M;f, f)= is the spectral gap of

M; for i =1,2.

Given target distribution m and proposal chain Q, My is

® reversible with respect to w, that is, for all x,y,
7.‘-('213)1\4'2(;% y) = ﬂ-(y)MQ(ya 37)

® (Maf, f)n < (M1f, f)n
L )\Q(Mz) > Ao (Ml)




Accelerated Metropolis-Hastings M,

We write (f, g)r := )_ f(z)g(x)m(x) and
A2(M;) »=infy 5y —o. (f,1y.<1{—M;f, f)x is the spectral gap of
M; for i =1,2.

Given target distribution m and proposal chain Q, My is

® reversible with respect to w, that is, for all x,y,
m(x) Ma(z,y) = 7(y)Ma(y, z).

° <M2f7f> S(leaf>
® Ag(Mz) = Ao(My).

For more comparison results between M; and My, see Choi and
Huang ’19+.
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S TreWe.e) o
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Accelerated simulated annealing

Accelerated simulated annealing, with proposal chain @), target
distribution 77 (i.e. the Gibbs distribution) and temperature
schedule T'(t), is a non-homogeneous Markov chain with
generator at time ¢ to be

S TreWe.e) o
{T‘.T(t)( )Q .T,y)’l}Q( ’y)7 f # Y,
My i(x,y)

- Zy; ot z,Y), for x = y.

Mg,t(fﬂ, y) =

® Recall the dynamics of classical simulated annealing:

T = min w x or x
My (a,y) = {WT@)@)Q@,@,)J}Q( ) for a4y,
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Main results

® The general message is that we can operate faster cooling
schedule on My ; than M ;!

® Similar to the classical case, the convergence behaviour of
M> ¢ depends critically on a constant we call cyy,.



Main results

® Case 1: cp, >0
The Markov chain generated by Ma; converges to moo in
total variation distance if for any € > 0,

CM, T+ €
Tt) = ———.
®) In(t+1)
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Main results

¢ Case 2: cp, <0
The Markov chain generated by Ma; converges to moo in

total variation distance if T (t) satisfies

; ey
e T(t)

lim (—T(t) ) = =

e (dt ()) O

Ezxamples of fast cooling schedule that satisfy the above
requirement are
1. (power law cooling) T'(t) = (t +1)=%, where a € (0,1).
2. (powers of logarithmic cooling) T(t) = (log(t + 1)) %, where
k>1.
3. T(t) = (t+ 1) (log(t + 1)) ", where a € (0,1).




What is cpy,?

(63,7 A= o U = 0

U,

CM, CM,
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What is cpy,?

® ¢y i=maxy yex{H(z,y) — U(x) — U(y)} = largest hill to
climb from a local minimum to a global minimum.

® Cpy P& MaXg yex { max, ey, 2= w=n]}Y for somei U(Z) N
Elev(y*¥)=H (z,y)
U(w) —Ul(x) — U(y)} ~ second largest hill to climb from a

local minimum to a global minimum

® ¢y > ey, When U has distinet values, ey, > e, -
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Main results

Suppose that x is a local minimum of U and under any cooling
schedule,

P, (XM =z ¥t > 0) = 0.
Under cooling schedule of the form

d

0= g+ 1y

where d < cpr,, then

P, (XM =2 vt >0) > 0.
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v' With probability 1 it will escape local minimum even under
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Summary

® Propose an accelerated simulated annealing M ;

v" Convergence guarantee under fast cooling that depends on
cm,- The optimal cooling schedule can be faster than
logarithmic cooling depending on @ and U.

v' With probability 1 it will escape local minimum even under
fast cooling

x  Relatively hard to simulate

¢ Classical simulated annealing My ;
x Convergence guarantee under slow cooling that depends on

CM,

x With positive probability it can get stuck in local minimum
under fast cooling

V" Relatively easy to simulate



Thank you! Question(s)?
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